Previous post: The Politics of Timothy Gowers. 2.
The preparations of Gowers to the elimination of mathematics are not limited to the elevation of the status of the most amenable to the computerization part of mathematics. T. Gowers uses other means also. His web page "Mathematical discussions” aims at developing some “more natural” ways to discover key mathematical ideas. By “more natural” Gowers apparently means “not requiring a sudden insight”. Some titles of his mini-articles are very telling. A good example is “How to solve basic analysis exercises without thinking.” To do mathematics without thinking is exactly what is needed for replacing mathematicians by computers. I consider this project as a failed one: no real way to discover key ideas without insight, not to say without thinking, is even hinted at in these notes. One of approaches used by Gowers is to reverse the history and shows how to use more recent ideas to discover the older ones, like in his note about the zeta-function. Euler’s and Riemann’s work on the zeta-function stimulated a lot of developments in analysis, and to use these developments to rediscover the main result of Euler looks like cheating. In other cases, like in his note about cubic equations, Gowers more or less rediscovers the original approaches. His approach to the cubic equations is very close to the one presented in every book about Galois theory paying some attention to the history.
My favorite part of this page is entitled "Topology”. It consists of only one phrase: "Watch this space”. This did not change at least since April 18, 2001 (according to the web archive). So, I am watching this space for more than a decade. Topology is the quintessential “first culture” mainstream mathematics, mathematics of Serre and Milnor. Completely missing, even without such a phrase, is algebraic geometry. It seems that the two most important developments in the twenties century mathematics are not amenable even to an attempt to eliminate or at least reduce the roles of insights and thinking.
The posts under the tag ‘Demystifying proofs’ in Gowers blog have the same goal and overlap with his “Mathematical discussions”.
Another project Gowers is actively promoting is called the “Polymath”. See posts in his blog under tags like “polymath”, “polymath1”, etc. Perhaps, the best place to start is the posts “Is massively collaborative mathematics possible?” and “Background to a polymath project”. The idea is, apparently, to prove theorems not by the usual process of an individual discovery or close interaction of few mathematicians, but by a massively parallel working of many mathematicians interacting on a special web site. This immediately brings to the memory famous computer “Deep Blue”, who won (at the second attempt) a chess match with Garry Kasparov, perhaps the best chess player of all times. “Deep Blue” relied on massively parallel computation, combined with the chess players’ insights (it turned out that without substantial help from human chess players the computer cannot beat Kasparov). Gowers attempt to arrange something similar but using only humans. This is, clearly, could be a good step toward replacing human mathematicians by computers, if successful.
To the best of my knowledge, the first attempt was somewhat successful, in the sense that it resulted in a published paper. But the result proved was not surprising at all, and the main contributions to the proof were made by very few mathematicians (perhaps, no more than three). The result was certainly accessible to a good mathematician working alone.
Much more can be found at “The polymath blog” and the Polymath1wiki (a Wiki-like site). Amazingly, 1/3 of the described there nine “Polymath projects” are devoted to solving specific problems from International Mathematical Olympiads. As is well known, a sufficiently bright and trained high school student can solve such problem in one-two hours.
So, it seems that the idea failed.
(It is worth to note that the domain name michaelnielsen.org, a subdomain of which is the Polymath1wiki, belongs to Michael Nielsen, who presents himself as “a writer, scientist, and programmer”. Perhaps, he is neither a writer, nor a scientist, nor a programmer, if these notions are understood in a sufficiently narrow sense. But we are not living at the times of André Weil, and nowadays he is definitely all of the above. The point is that even nowadays he is not classified as a mathematician.)
I think that all this gives a good idea of what I understand by the politics of Gowers.
He is also actively involved in a battle with big publishers over the prices of scientific journals. In this case his goals are quite close to my heart (in contrast with the already discussed activities), and I even signed an inspired by Gowers declaration of non-collaboration with the infamous publisher Reed-Elsevier. Still, I believe that his approach is misguided. Elsevier may be the most evil scientific publisher, but not the only one evil, and even the university presses and learned societies act in an evil manner more often than one may expect. From my point of view, the root of the problem is in the scientific community itself, and the solution can be found also only within this community. Everything depends on the transfer of the copyright from authors to publishers. Scientists need to refuse to transfer the copyright. But this is another topic.
Next post: T. Gowers about replacing mathematicians by computers. 1
About the title
About the title
I changed the title of the blog on March 20, 2013 (it used to have the title “Notes of an owl”). This was my immediate reaction to the news the T. Gowers was presenting to the public the works of P. Deligne on the occasion of the award of the Abel prize to Deligne in 2013 (by his own admission, T. Gowers is not qualified to do this).
The issue at hand is not just the lack of qualification; the real issue is that the award to P. Deligne is, unfortunately, the best compensation to the mathematical community for the 2012 award of Abel prize to Szemerédi. I predicted Deligne before the announcement on these grounds alone. I would prefer if the prize to P. Deligne would be awarded out of pure appreciation of his work.I believe that mathematicians urgently need to stop the growth of Gowers's influence, and, first of all, his initiatives in mathematical publishing. I wrote extensively about the first one; now there is another: to take over the arXiv overlay electronic journals. The same arguments apply.
Now it looks like this title is very good, contrary to my initial opinion. And there is no way back.