About the title

About the title

I changed the title of the blog on March 20, 2013 (it used to have the title “Notes of an owl”). This was my immediate reaction to the news the T. Gowers was presenting to the public the works of P. Deligne on the occasion of the award of the Abel prize to Deligne in 2013 (by his own admission, T. Gowers is not qualified to do this).

The issue at hand is not just the lack of qualification; the real issue is that the award to P. Deligne is, unfortunately, the best compensation to the mathematical community for the 2012 award of Abel prize to Szemerédi. I predicted Deligne before the announcement on these grounds alone. I would prefer if the prize to P. Deligne would be awarded out of pure appreciation of his work.



I believe that mathematicians urgently need to stop the growth of Gowers's influence, and, first of all, his initiatives in mathematical publishing. I wrote extensively about the first one; now there is another: to take over the arXiv overlay electronic journals. The same arguments apply.



Now it looks like this title is very good, contrary to my initial opinion. And there is no way back.
Showing posts with label André Weil. Show all posts
Showing posts with label André Weil. Show all posts

Tuesday, August 20, 2013

New ideas

Previous post: Did J. Lurie solved any big problem?


Tamas Gabal asked:

“Dear Sowa, in your own experience, how often genuinely new ideas appear in an active field of mathematics and how long are the periods in between when people digest and build theories around those ideas? What are the dynamics of progress in mathematics, and how various areas are different in this regard?”

Here is my partial reply.


This question requires a book-length answer; especially because it is not very precisely formulated. I will try to be shorter. :- )

First of all, what should be considered as genuinely new ideas? How new and original they are required to be? Even for such a fundamental notion as an integral there are different choices. At one end, there is only one new idea related to it, which predates the discovery of the mathematics itself. Namely, it is idea of the area. If we lower our requirements a little, there will be 3 other ideas, associated with the works or Archimedes, Lebesque, and hardly known by now works of Danjoy, Perron, and others. The Riemann integral is just a modern version of Archimedes and other Ancient Greek mathematician. The Danjoy integral generalizes the Lebesgue one and has some desirable properties which the Lebesgue integral has not. But it turned out to be a dead end without any applications to topics of general interest. I will stop my survey of the theory of integration here: there are many other contributions. The point is that if we lower our requirements further, then we have much more “genuinely new” ideas.

It would be much better to speak not about some vague levels of originality, but about areas of mathematics. Some ideas are new and important inside the theory of integration, but are of almost no interest for outsiders.

You asked about my personal experience. Are you asking about what my general knowledge tells me, or what happened in my own mathematical life? Even if you are asking about the latter, it is very hard to answer. At the highest level I contributed no new ideas. One may even say that nobody after Grothendieck did (although I personally believe that 2 or 3 other mathematicians did), so I am not ashamed. I am not inclined to classify my work as analysis, algebra, geometry, topology, etc. Formally, I am assigned to one of these boxes; but this only hurts me and my research. Still, there is a fairly narrow subfield of mathematics to which I contributed, probably, 2 or 3 ideas. According to A. Weil, if a mathematician had contributed 1 new idea, he is really exceptional; most of mathematicians do not contribute any new ideas. If a mathematician contributed 2 or 3 new ideas, he or she would be a great mathematician, according to A. Weil. By this reason, I wrote “2 or 3” not without a great hesitation. I do not overestimate myself. I wanted to illustrate what happens if the area is sufficiently narrow, but not necessarily to the limit. The area I am taking about can be very naturally partitioned further. I worked in other fields too, and I hope that these papers also contain a couple of new ideas. For sure, they are of a level lower than the one A. Weil had in mind.

On one hand side this personal example shows another extreme way to count the frequency of new ideas. I don’t think that it would be interesting to lower the level further. Many papers and even small lemmas contain some little new ideas (still, much more do not). On the other side, this is important on a personal level. Mathematics is a very difficult profession, and it lost almost all its appeal as a career due to the changes of the universities (at least in the West, especially in the US). It is better to know in advance what kind of internal reward you may get out of it.

As of the timeframe, I think that a new idea is usually understood and used within a year (one has to keep in mind that mathematics is a very slow art) by few followers of the discoverer, often by his or her students or personal friends. Here “few” is something like 2-5 mathematicians. The mathematical community needs about 10 years to digest something new, sometimes it needs much more time. It seems that all this is independent of the level of the contribution. The less fundamental ideas are of interest to fewer people. So they are digested more slowly, despite being easier.

I don’t have much to say about the dynamics (what is the dynamics here?) of progress in mathematics. The past is discussed in many books about history of mathematics; despite I don’t know any which I could recommend without reservations. The only exception is the historical notes at the ends of N. Bourbaki books (they are translated into English and published as a separate book by Springer). A good starting point to read about 20th century is the article by M. Atiyah, “Mathematics in the 20th century”, American Mathematical Monthly, August/September 2001, p. 654 – 666. I will not try to predict the future. If you predict it correctly, nobody will believe you; if not, there is no point. Mathematicians usually try to shape the future by posing problems, but this usually fails even if the problem is solved, because it is solved by tools developed for other purposes. And the future of mathematics is determined by tools. A solution of a really difficult problem often kills an area of research, at least temporarily (for decades minimum).

My predictions for the pure mathematics are rather bleak, but they are based on observing the basic trends in the society, and not on the internal situation in mathematics. There is an internal problem in mathematics pointed out by C. Smorinsky in the 1980ies. The very fast development of mathematics in the preceding decades created many large gaps in the mathematical literature. Some theories lack readable expositions, some theorem are universally accepted but appear to have big gaps in their proofs. C. Smorinsky predicted that mathematicians will turn to expository work and will clear this mess. He also predicted more attention to the history of mathematics. A lot of ideas are hard to understand without knowing why and how they were developed. His predictions did not materialize yet. The expository work is often more difficult than the so-called “original research”, but it is hardly rewarded.


Next post: About some ways to work in mathematics.

Monday, June 4, 2012

T. Gowers about replacing mathematicians by computers. 2

Previous post: T. Gowers about replacing mathematicians by computers. 1.


As we do know too well by now, not all scientific or technological progress is unqualifiedly beneficial for the humanity. As one of the results of scientific research the humanity now has the ability to exterminate not only all humans, but also all the life on Earth. Dealing with this problem determined to a big extent the direction of development of western countries since shortly after WWII. There are not so dramatic examples also; a scientific research about humans may damage only minor part of the population, or even just the subjects of this research (during the last decades, such a research is carefully monitored in order to avoid any harm to the subjects).

Gowers’s project is an experiment on humans. I believe that replacing mathematicians by computers will do a lot of harm at least to the people who could find their joy and the meaning of life in doing mathematics. But the results, if the project succeeds, are not predictable. If we agree, together with André Weil, that mathematics is an indispensable part of our culture, then it hardly possible to predict what will happen without it.


There is also question if Gowers’s goal is achievable at all. He limited it in at least two significant respects. First, he would be satisfied even if computer will not surpass humans (as opposed to the designers of “Deep Blue”, who wanted and managed to surpass the best chess players). Second, he always speaks about proving theorems, and never about discovering analogies, introducing new definitions, etc. These aspects are the most important part of mathematics, not the theorems (compare the already quoted maxim by Manin). But only theorems matter in the Hungarian-style mathematics. Perhaps, this is the reason why Gowers never mentions these aspects of mathematics. It is hard to tell if this limited goal can be achieved. Given a statement, a computer definitely able sometimes to find a proof of it (or disprove it) by a sufficiently exhaustive search. If it is not able to give an answer, the problem remains open, exactly as in human mathematics. What kind of statements a computer will be able to deal with, is another question.

Some of the best problems are not a true-false type of questions. For example, the problem of defining a “good” cohomology theory for algebraic varieties over finite fields (to a big extent solved by Grothendieck), or the problem of defining higher algebraic K-functors (solved by Quillen). It is impossible for me to imagine a computer capable to invent new definitions or suggest problems based on vague analogies like these two problems, responsible for perhaps a half of really good mathematics after 1950.


It seems that I could feel safe: even in the gloomy Gowers’s future, there will be place for human mathematicians. In fact, the future theorems, stated as conjectures, always served as one of the main, or simply the main stimulus to invention of new definitions. In addition, the success of Gowers’s project will mean the end of mathematics as a profession. There will be no new mathematicians, of Serre’s level, or any other, simply because there will be no way to earn a living by doing human mathematics.

Next post: The twist ending. 1

T. Gowers about replacing mathematicians by computers. 1

Previous post: The Politics of Timothy Gowers. 3.


Starting with his “GAFA Visions” essay, T. Gowers promotes the idea that it is possible and desirable to design computers capable of proving theorems at a very high level, although he will be satisfied if such computers still will be not able to perform at the level of the very best mathematician, for example, at the level of Serre or Milnor. I attempted to discuss this topic with him in the comments to his post about this year Abel prize.

I had no plans for such a discussion, and the topic wasn’t selected by me. I made a spontaneous comment in another blog, which was a reaction to a reaction to a post about E. Szemerédi being awarded this year Abel prize. But I stated my position with many details in Gowers’s blog. T. Gowers replied to only three of my comments, and only partially. It seems that for many people it is hard to believe that a mathematician of the stature of T. Gowers may be interested in eliminating mathematics as a human activity, and this is why my comments in that blog made their way to Gowers’s one (one can find links in the latter).

For Gowers, the goal of designing computers capable of replacing mathematicians is fascinating by itself. Adding some details to his motivation, he claims that such computers cannot be designed without deep understanding of how humans prove theorems. He will not consider his goal achieved if the theorem-proving computer will operate in the manner of “Deep Blue” chess-playing computer, namely, by a huge and a massively parallel (like “Deep Blue”) search. Without any explanation, even after directly asked about this, he claims that in fact a computer operating in the manner of “Deep Blue” cannot be successful in proving theorems. In his opinion, such a computer should closely imitate humans (whence we will learn something about humans by designing such a computer), and that it is much simpler to imitate humans doing mathematics than other tasks.

In addition, Gowers holds the opinion that elimination of mathematics would be not a big loss, comparing it to losing many old professions to the technology.


Gowers’s position contradicts to the all the experience of the humanity. None of successful technologies imitates the way the humans act. No means of transportation imitates walking or running, for example. On the other end and closer to mathematics, no computer playing chess imitates human chess players.

Note that parallel processing (on which “Deep Blue” had heavily relied) is exactly that Gowers attempts to do with mathematics in his Polymath project. It seems that this project approaches the problem from the other end: it is an attempt to make humans to act like computers. This will definitely simplify the goal of imitating them by computers. Will they be humans after this?


Gowers’s position is a position of a scientist interested in learning how something functions and not caring about the cost; in his case not caring about the very survival of mathematics. In my opinion, this means that he is not a mathematician anymore. Of course, he proves theorems, relies on his mathematical experience in his destructive project, but these facts are uninteresting trivialities. I expect from mathematician affection toward mathematics and a desire of its continuing flourishing. (How many nominal mathematicians such a requirement will disqualify?)


Next post: T. Gowers about replacing mathematicians by computers. 2.

Wednesday, May 23, 2012

The Politics of Timothy Gowers. 3

Previous post: The Politics of Timothy Gowers. 2.


The preparations of Gowers to the elimination of mathematics are not limited to the elevation of the status of the most amenable to the computerization part of mathematics. T. Gowers uses other means also. His web page "Mathematical discussions” aims at developing some “more natural” ways to discover key mathematical ideas. By “more natural” Gowers apparently means “not requiring a sudden insight”. Some titles of his mini-articles are very telling. A good example is “How to solve basic analysis exercises without thinking.” To do mathematics without thinking is exactly what is needed for replacing mathematicians by computers. I consider this project as a failed one: no real way to discover key ideas without insight, not to say without thinking, is even hinted at in these notes. One of approaches used by Gowers is to reverse the history and shows how to use more recent ideas to discover the older ones, like in his note about the zeta-function. Euler’s and Riemann’s work on the zeta-function stimulated a lot of developments in analysis, and to use these developments to rediscover the main result of Euler looks like cheating. In other cases, like in his note about cubic equations, Gowers more or less rediscovers the original approaches. His approach to the cubic equations is very close to the one presented in every book about Galois theory paying some attention to the history.

My favorite part of this page is entitled "Topology”. It consists of only one phrase: "Watch this space”. This did not change at least since April 18, 2001 (according to the web archive). So, I am watching this space for more than a decade. Topology is the quintessential “first culture” mainstream mathematics, mathematics of Serre and Milnor. Completely missing, even without such a phrase, is algebraic geometry. It seems that the two most important developments in the twenties century mathematics are not amenable even to an attempt to eliminate or at least reduce the roles of insights and thinking.

The posts under the tag ‘Demystifying proofs’ in Gowers blog have the same goal and overlap with his “Mathematical discussions”.


Another project Gowers is actively promoting is called the “Polymath”. See posts in his blog under tags like “polymath”,  “polymath1”,  etc. Perhaps, the best place to start is the posts “Is massively collaborative mathematics possible?” and “Background to a polymath project”. The idea is, apparently, to prove theorems not by the usual process of an individual discovery or close interaction of few mathematicians, but by a massively parallel working of many mathematicians interacting on a special web site. This immediately brings to the memory famous computer “Deep Blue”, who won (at the second attempt) a chess match with Garry Kasparov, perhaps the best chess player of all times. “Deep Blue” relied on massively parallel computation, combined with the chess players’ insights (it turned out that without substantial help from human chess players the computer cannot beat Kasparov). Gowers attempt to arrange something similar but using only humans. This is, clearly, could be a good step toward replacing human mathematicians by computers, if successful.

To the best of my knowledge, the first attempt was somewhat successful, in the sense that it resulted in a published paper. But the result proved was not surprising at all, and the main contributions to the proof were made by very few mathematicians (perhaps, no more than three). The result was certainly accessible to a good mathematician working alone.

Much more can be found at “The polymath blog” and the Polymath1wiki (a Wiki-like site). Amazingly, 1/3 of the described there nine “Polymath projects” are devoted to solving specific problems from International Mathematical Olympiads. As is well known, a sufficiently bright and trained high school student can solve such problem in one-two hours.

So, it seems that the idea failed.

(It is worth to note that the domain name michaelnielsen.org, a subdomain of which is the Polymath1wiki, belongs to Michael Nielsen, who presents himself as “a writer, scientist, and programmer”. Perhaps, he is neither a writer, nor a scientist, nor a programmer, if these notions are understood in a sufficiently narrow sense. But we are not living at the times of André Weil, and nowadays he is definitely all of the above. The point is that even nowadays he is not classified as a mathematician.)


I think that all this gives a good idea of what I understand by the politics of Gowers.

He is also actively involved in a battle with big publishers over the prices of scientific journals. In this case his goals are quite close to my heart (in contrast with the already discussed activities), and I even signed an inspired by Gowers declaration of non-collaboration with the infamous publisher Reed-Elsevier. Still, I believe that his approach is misguided. Elsevier may be the most evil scientific publisher, but not the only one evil, and even the university presses and learned societies act in an evil manner more often than one may expect. From my point of view, the root of the problem is in the scientific community itself, and the solution can be found also only within this community. Everything depends on the transfer of the copyright from authors to publishers. Scientists need to refuse to transfer the copyright. But this is another topic.


Next post: T. Gowers about replacing mathematicians by computers. 1

Saturday, April 14, 2012

The times of André Weil and the times of Timothy Gowers. 3

Previous post: The times of André Weil and the times of Timothy Gowers. 2.


Now we can hardly say that mathematics is a useless science in the sense of G.H. Hardy. It contributes to the exploitation in various ways. For example, the theory of stochastic differential equations, a highly sophisticated branch of mathematics, is essential for the financial manipulations leading to a redistribution of wealth from the middle class to the top 1% of the population. The encryption schemes, designed by mathematicians and implemented by software engineers, prevent access of the general public to all sorts of artistic and intellectual goods. This is a new phenomenon, a result of the development of the Internet.

There is no need to detail the enormous contribution of mathematics to the business of extermination; it is obvious now (this wasn’t known to the general public when A. Weil wrote his article).

Mathematicians are not as free now as they were at the times of André Weil. There are (almost?) no more non-mathematical jobs which will earn a decent livehood and will leave enough energy for mathematical research. This situation is aggravated by the fact that if someone is not employed by a sufficiently rich university, then he or she has no access to the current mathematical literature, which is mostly electronic now, and, if sold to individuals, then the prices are set to be prohibitive. The access to these electronic materials (which cost almost nothing to the publishers to produce) is protected by the above mentioned encryption tools. The industry of the scientific publishing does not have publishing as its main activity any more. Its main business now is the restricting access to scientific papers by a combination of encryption, software, and lobbying for favorable to this industry laws. The main goal pursued is the transfer of the taxpayers dollars to the pockets of its executives and shareholders (this topics deserves a separate detailed discussion).

There are no Nobel prizes in mathematics, but there are many others. The Norwegian Abel prize is specifically intended to be a “Nobel prize” in mathematics. Long before it was established (the first one was awarded in 2003), another prize, the Fields medal, achieved incredible prestige and influence in mathematics, despite the negligible monetary award associated with it. In contrast with the Nobel and Abel prizes, the Fields medal may be awarded only to “young” mathematicians. The meaning of the word “young” was initially not specified, but the mathematical establishment slowly arrived at a precise definition. Somebody is young for the purposes of awarding a Fields medal, if he did not achieved the age 41 in the year of the International Congress of Mathematicians, at which the medal is to be awarded. The Congresses are hold every 4 years (only World War II caused an interruption). So, the persons born in the year of a Congress have additional 4 year to work and to have their work recognized.

Even if this stupid rule would be discarded, the age limitation tends to reward fast people strong at applying existing methods to famous problems. The Fields medals (and many other prizes in mathematics) are usually awarded to the mathematician who made the last step in a solution of a problem, and only rarely to the one who discovered a new method or new line of thought. There are only little chances for “slow maturing work” to be rewarded by this most prestigious award (more prestigious by an order of magnitude than any other prize, except, may be, the Abel prize, which is up to now was awarded almost exclusively to the people of the retirement age).

It was possible to ignore all the prizes in 1948. The Fields medals were awarded only once, in 1936, to two mathematicians. Other prizes, where they existed, did not carry any serious prestige. But in 1950, 1954, and 1958 Fields medals went to exceptionally brilliant mathematicians, and since then this was a prize coveted by anybody who thought that there is a chance to get it.

Now there are many other prizes, each one striving to carry as much weight and influence as possible. An interesting example is the story of the Salem prize. The Salem prize was established by the widow of Raphaël Salem in order to encourage work in Salem's field of interest, primarily the theory of Fourier series. Note that Fourier series and their versions are used throughout almost whole mathematics; it is only natural to think that the prize was intended to mathematicians working on problems really close to Salem’s interests. The international committee (occasionally changing by an unknown to the public mechanism) gradually increased the scope of the prize. By 1991 no connection with Salem’s interests could be observed. Now it is the most prestigious prize for young analysts without any restrictions (and the analysis is understood in a very broad sense).

In fact, this change (as also a suspected preference for mathematicians belonging to one or two particular schools) was not welcomed by Salem’s family, and it withdraw the funding for the prize. The committee did not inform the mathematical public about these events and continued to award the prize with $0.00 attached. I am not aware of the current situation; may be the committee managed to raise some money. (Please, note that I cannot name my sources, as it is often the case in the news reporting, and hence cannot provide any proof. I can only vouch that my sources are reliable and well informed.)

The negligible monetary value of most mathematical prizes is not of any importance. The prestige is immediately transformed into the salary rises, offers from rich universities capable of doubling the salary, etc. The lifetime income could be increased by a much bigger amount than the monetary value of a Nobel Prize.

These are the signs of the lost innocence directly related to the article of André Weil. There are many other signs, and one can talk about them indefinitely. In any case, there are no more ivory towers for mathematicians; their jobs depend on many complicated and not always natural implicit agreements in the society, various laws and regulations detailing the laws, etc. From 1945 till about 1985 all these agreements and laws worked very favorably for mathematics. But, as it turned out, the same laws and understandings could be easily used to control mathematicians, sometimes directly, sometimes in hardly discernible ways, and the same arguments that were used to increase the number of jobs 60 or 50 years ago, could, in principle, be used to eliminate these jobs completely.


Next post: My affair with Szemerédi-Gowers mathematics.

Friday, April 13, 2012

The times of André Weil and the times of Timothy Gowers. 2

Previous post: The times of André Weil and the times of Timothy Gowers. 1.


Different people hold different views about the future of humankind, even about the next few decades. No matter what position is taken, it is not difficult to understand the concerns about the future of the human race in 1948. They are still legitimate today.

It seems to me that today we have much more evidence that we may be witnessing an eclipse of our civilization than we had in 1948. While the memories of two World Wars apparently faded, these wars are still parts of the modern history. The following decades brought to the light many other hardly encouraging phenomena. Perhaps, the highest point of our civilization occured on July 20, 1969, the day of the Apollo 11 Moon landing. While the Apollo 11 mission was almost purely symbolic, it is quite disheartening to know that nobody can reproduce this achievement today or in a near future. In fact, the US are now not able to put humans even on a low orbit and have to rely on Russian rockets. This does not mean that Russia went far ahead of the US; it means only that Russians preserved the old technologies better than Americans. Apparently, most of western countries do not believe in the technological progress anymore, and are much more willing to speak about restraining it, in contrast with the hopes of previous generations. Approximately during the same period most of arts went into a decline. This should be obvious to anybody who visited a large museum having expositions of both classical and modern arts. In particular, if one goes from expositions devoted to the classical arts to the ones representing more and more modern arts, the less people one will see, until reaching totally empty halls. It is the same in the New York Museum of Modern Art and the Centre Pompidou in Paris.

Mathematics is largely an art. It is a science in the sense that mathematicians are seeking truths about some things existing independently of them (almost all mathematician feel that they do not invent anything, they do discover; philosophers often disagree). It is an art in the sense that mathematician are guided mainly by esthetic criteria in choosing what is worthwhile to do. Mathematical results have to be beautiful. As G.H. Hardy said, there is no permanent place in the world for ugly mathematics. In view of this, the lesson of the art history are quite relevant for mathematicians.


How Timothy Gowers sees the future of mathematics? He outlined his vision in an innocently entitled paper “Rough structure and classification” in a special issue “Visions in Mathematics” of “Geometric and Functional Analysis”, one of the best mathematical journals (see Geom. Funct. Anal. 2000, Special Volume, Part I, 79–117). Section 2 of this paper is entitled “Will mathematics exists in 2099?” and outlines a scenario of gradual transfer of the work of mathematicians to computers. He ends this section by the following passage.

“In the end, the work of the mathematician would be simply to learn how to use theorem-proving machines effectively and to find interesting applications for them. This would be a valuable skill, but it would hardly be pure mathematics as we know it today.”
Surely, this will be not mathematics. This prognosis of T. Gowers is even gloomier than the one which was unthinkable to A. Weil. The destiny of mathematics, as seen by Gowers, is not to be just a technique in the service of other techniques; its fate is non-existence. The service to other techniques will be provided by computers, watched over by moderately skilled professionals.

We see that nowadays even mathematicians of his very high stature do not consider mathematics as necessary, and ready to sacrifice it for rather unclear goals (more about his motivation will be in the following posts). Definitely, an elimination of mathematics as a human activity will not improve the conditions of human life. It will not lead to new applications of mathematics, because for applications mathematics is not needed at all. Mathematics is distinguished from all activities relaying on it by the requirement to provide proofs of the claimed results. But proofs are not needed for any applications; heuristic arguments supported by an experiment are convincing enough. André Weil and, in fact, most of mathematicians till recently considered mathematics as an irreplaceable part of our culture. If mathematics is eliminated, then a completely different sort of human society will emerge. It is far from being clear even that the civilization will survive. But even if it will, are we going to like it?

This is the main difference between the times of André Weil and the times of Timothy Gowers. In 1948 at least mathematicians cared about the future of mathematics, in 2012 one of the most influential mathematicians declares that he does not care much about the very existence of mathematics. Timothy Gowers is not the only mathematician with such views; but nobody of his stature in the mathematical community expressed them so frankly and clearly. He is a very good writer.


Next post: The times of André Weil and the times of Timothy Gowers. 3.

The times of André Weil and the times of Timothy Gowers. 1

Previous post: A reply to some remarks by André Joyal.


This is the first in a series of posts prompted by the award of 2012 Abel Prize to E. Szemerédi. He is, perhaps, the most prominent representative of what is often called the Hungarian style combinatorics or the Hungarian style mathematics and what until quite recently never commanded a high respect among mainstream mathematicians. At the end of the previous millennium, Timothy Gowers, a highly respected member of the mathematical community, and one of the top members of the mathematical establishment, started to advance simultaneously two ideas. The first idea is that mathematics is divided into two cultures: the mainstream conceptual mathematics and the second culture, which is, apparently, more or less the same as the Hungarian style combinatorics; while these two styles of doing mathematics are different, there is a lot parallels between them, and they should be treated as equals. This is in a sharp contrast with the mainstream point of view, according to which the conceptual mathematics is incomparably deeper, and Hungarian combinatorics consists mostly of elementary manipulations with elementary objects. Here “elementary” means “of low level of abstraction”, and not “easy to find or follow. The second idea of Gowers is to emulate the work of a mathematician by a computer and, as a result, replace mathematicians by computers and essentially eliminate mathematics. In fact, these two ideas cannot be completely separated.

In order to put these issues in a perspective, I will start with several quotes from André Weil, one of the very best mathematicians of the last century. Perhaps, he is one of the two best, the other one being Alexander Grothendieck. In 1948 André Weil published in French a remarkable paper entitled “L’Avenier des mathémathiques”. Very soon it was translated in the American Mathematical Monthly as “The Future of Mathematics” (see V. 57, No. 5 (1950), 295-306). I slightly edited this translation using the original French text at the places where the translation appeared to be not quite clear (I don’t know if it was clear in 1950).

A. Weil starts with few remarks about the future of our civilization in general, and then turns to the mathematics and its future.


“Our faith in progress, our belief in the future of our civilization are no longer as strong; they have been too rudely shaken by brutal shocks. To us, it hardly seems legitimate to “extrapolate” from the past and present to the future, a Poincaré did not hesitate to do. If the mathematician is asked to express himself as to the future of his science, he has a right to raise the preliminary question: what king of future is mankind preparing for itself? Are our modes of thought, fruits of the sustained efforts of the last four or five millennia, anything more than a vanishing flash? If, unwilling to stumble into metaphysics, one should prefer to remain on the hardly more solid ground of history, the same question reappear, although in different guise, are we witnessing the beginning of a new eclipse of civilization. Rather than to abandon ourselves to the selfish joys of creative work, is it not our duty to put the essential elements of our culture in order, for the mere purpose of preserving it, so that at the dawn of a new Renaissance, our descendants may one day find them intact?”


“Mathematics, as we know it, appears to us as one of the necessary forms of our thought. True, the archaeologist and the historian have shown us civilizations from which mathematics was absent. Without Greeks, it is doubtful whether mathematics would ever have become more than a technique, at the service of other techniques; and it is possible that, under our very eyes, a type of human society is being evolved in which mathematics will be nothing but that. But for us, whose shoulders sag under the weight of the heritage of Greek thought and walk in path traced out by the heroes of the Renaissance, a civilization without mathematics is unthinkable. Like the parallel postulate, the postulate that mathematics will survive has been stripped of its “obviousness”; but, while the former is no longer necessary, we couldn't do without the latter.”


““Mathematics”, said G.H. Hardy in a famous inaugural lecture “is a useless science. By this I mean that it can contribute directly neither to the exploitation of our fellowmen, nor to their extermination.

It is certain that few men of our times are as completely free as the mathematician in the exercise of their intellectual activity. ... Pencil and paper is all the mathematician needs; he can even sometimes get along without these. Neither are there Nobel prizes to tempt him away from slowly maturing work, towards brilliant but ephemeral result.”


One of the salient points made by A. Weil in this essay (and other places) is the fragility of mathematics, its very existence being a result of historical accident, namely of the interest of some ancient Greeks in a particular kind of questions and, more importantly, in a particular kind of arguments. Already in 1950 we could not take for granted the continuing existence of mathematics; it seems that the future of mathematics is much less certain in 2012 than it was in 1950.


Next post: The times of André Weil and the times of Timothy Gowers. 2.