About the title

About the title

I changed the title of the blog on March 20, 2013 (it used to have the title “Notes of an owl”). This was my immediate reaction to the news the T. Gowers was presenting to the public the works of P. Deligne on the occasion of the award of the Abel prize to Deligne in 2013 (by his own admission, T. Gowers is not qualified to do this).

The issue at hand is not just the lack of qualification; the real issue is that the award to P. Deligne is, unfortunately, the best compensation to the mathematical community for the 2012 award of Abel prize to Szemerédi. I predicted Deligne before the announcement on these grounds alone. I would prefer if the prize to P. Deligne would be awarded out of pure appreciation of his work.



I believe that mathematicians urgently need to stop the growth of Gowers's influence, and, first of all, his initiatives in mathematical publishing. I wrote extensively about the first one; now there is another: to take over the arXiv overlay electronic journals. The same arguments apply.



Now it looks like this title is very good, contrary to my initial opinion. And there is no way back.
Showing posts with label computers. Show all posts
Showing posts with label computers. Show all posts

Wednesday, August 21, 2013

About some ways to work in mathematics

Previous post: New ideas.


From a comment by Tamas Gabal:

“...you mentioned that the problems are often solved by methods developed for completely different purposes. This can be interpreted in two different ways. First - if you work on some problem, you should constantly look for ideas that may seem unrelated to apply to your problem. Second - focus entirely on the development of your ideas and look for problems that may seem unrelated to apply your ideas. I personally lean toward the latter, but your advice may be different.”

Both ways to work are possible. There are also other ways: for example, not to have any specific problem to solve. One should not suggest one way or another as the right one. You should work in the way which suits you more. Otherwise you are unlikely to succeed and you will miss most of the joy.

Actually, my statement did not suggest either of these approaches. Sometimes a problem is solved by discovering a connection between previously unrelated fields, and sometimes a problem is solved entirely within the context in was posed originally. You never know. And how one constantly looks for outside ideas? A useful idea may be hidden deep inside of some theory and invisible otherwise. Nobody studies the whole mathematics in the hope that this will help to solve a specific problem.

I think that it would be better not to think in terms of this alternative at all. You have a problem to solve, you work on it in all ways you can (most of approaches will fail – this is the unpleasant part of the profession), and that’s it. The advice would be to follow development in a sufficiently big chunk of mathematics. Do not limit yourself by, say, algebra (if your field is algebra). The division of mathematics into geometry, algebra, and analysis is quite outdated. Then you may suddenly learn about some idea which will help you.

Also, you do not need to have a problem to begin with. Usually a mathematician starts with a precisely stated problem, suggested by the Ph.D. advisor. But even this is not necessary.

My own way to work is very close to the way M. Atiyah described as his way of work in an interview published in “The Mathematical Intelligencer” in early 1980ies (of course, I do not claim that the achievements are comparable). This interview is highly recommended; it is also highly recommended by T. Gowers. I believe that I explained how I work to a friend (who asked a question similar to yours one) before I read this interview. Anyhow, I described my way to him as follows. I do not work on any specific problem, except of my own working conjectures. I am swimming in mathematics like in a sea or river and look around for interesting things (the river of mathematics carries much more stuff than a real river). Technically this means that I follow various sources informing about the current developments, including talks, I read papers, both current and old ones, and I learn some stuff from textbooks. An advanced graduate level textbook not in my area is my favorite type of books in mathematics. I am doing this because this is that I like to do, not because I want to solve a problem or need to publish 12 papers during next 3 years. From time to time I see something to which, I feel, I can contribute. From time to time I see some connections which were not noticed before.

My work in “my area” started in the following way. I was familiar with a very new theory, which I learned from the only available (till about 2-3 years ago!) source: a French seminar devoted to its exposition. The author never wrote down any details. Then a famous mathematician visited us and gave a talk about a new (not published yet) remarkable theorem of another mathematician (it seems to me that it is good when people speak not only about their own work). The proof used at a key point an outside “Theorem A” by still another mathematicians. The speaker outlined its proof in few phrases (most speakers would just quote Theorem A, so I was really lucky). Very soon I realized (may be the same day or even during the talk) that the above new theory allows at least partially transplant Theorem A in a completely different context following the outline from the talk. But there is a problem: the conclusion of Theorem A tells that you are either in a very nice generic situation, or in an exceptional situation. In my context there are obvious exceptions, but I had no idea if there are non-obvious exceptions, and how to approach any exceptions. So, I did not even started to work on any details. 2-3 years later a preprint arrived in the mail. It was sent to me by reasons not related at all with the above story; actually, I did not tell anybody about these ideas. The preprint contained exactly what I needed: a proof that there are only obvious exceptional cases (not mentioning Theorem A). Within a month I had a proof of an analogue of Theorem A (this proof was quickly replaced by a better one and I am not able to reproduce it). Naturally, I started to look around: what else can be done in my context. As it turned out, a lot. And the theory I learned from that French seminar is not needed for many interesting things.

Could all this be planned in advance following some advice of some experienced person? Certainly, not. But if you do like this style, my advice would be: work this way. You will be not able to predict when you will discover something interesting, but you will discover. If this style does not appeal to you, do not try.

Note that this style is opposite to the Gowers’s one. He starts with a problem. His belief that mathematics can be done by computers is based on a not quite explicit assumption that his is the only way, and he keeps a place for humans in his not-very-science-fiction at least at the beginning: humans are needed as the source of problems for computers. I don’t see any motivation for humans to supply computers with mathematical problems, but, apparently, Gowers does. More importantly, a part of mathematics which admits solutions of its problems by computers will very soon die out. Since the proofs will be produced and verified by computers, humans will have no source of inspiration (which is the proofs).


Next post: Is algebraic geometry applied or pure mathematics?

Tuesday, June 11, 2013

New comments to the post "What is mathematics?"

Previous post: What is combinatorics and what this blog is about according to Igor Pak.


There is a new thread of comments to the post "What is mathematics?" started by Sandro Magi. The post is dated April 3; this thread started on May 31. The thread is concerned with only one claim in that post: proofs are not needed at all for applications of mathematics.

Unfortunately, the very first phrase of Sandro Magi set the tone for the rest of the discussion: "This is blatantly false". I do not like to discuss things in such a manner: with a total lack of cooperation. The combinatorialists at Gowers's blog are much more friendly even after a direct attack on their field. But, I believe that the reason is not any kind of malice of either party. This dialog is a good illustration of the near impossiblity of people thinking linearly and verbally to understand people thinking visually. In this case the dialog of a mathematician (every mathematician thinks at least partially visually) and a software engineer turned out to be impossible. I encountered the same sort of difficulties while discussing essentially any other subject, from the movies to the current affairs. I see also this lack of understanding of visual and "the big picture" issues in the design and functionality of almost all the software.

Still, it seems to me that there are some important ideas in that discussion. Of course, it would be better to give a coherent exposition. But an attempt to write it would take a lot of time, and who knows when it would be ready.

If somebody wants to comment on any issue there, I suggest to post comments here; this will result in a more clear structure of comments. As an additional benefit for the next 30 days the comments here are not moderated; they are moderated at that post. This rule is subject to change without notice. :-) I would like to ask Sandro Magi to continue our discussion in comments to "What is mathematics?" and not here (of course, he is under not obligation to continue); then the whole discussion will be at the same place.


Next post: 2014 Fields medalists?.

Wednesday, April 3, 2013

What is mathematics?

Previous post: D. Zeilberger's Opinions 1 and 62.


This is a reply to a comment by vznvzn to a post in this blog.


I am not in the business of predicting the future. I have no idea what people will take seriously in 2050. I do not expect that Gowers’s fantasies, or yours, which are nearly the same, will turn into reality. I wouldn’t be surprised that the humanity will return by this time to the Middle Ages, or even to the pre-historical level. But I wouldn't bet on this even a dollar. At the same time mathematics can disappear very quickly. Mathematics is an extremely unusual and fragile human activity, which appeared by an accident, then disappeared for almost a thousand years, then slowly returned. The flourishing of mathematics in 20th century is very exceptional. In fact, we already have much more mathematicians (this is true independently of which meaning of the word “mathematician” one uses) than society, or, if you prefer, humanity needs.

The meaning of words “mathematics”, “mathematician” becomes important the moment the “computer-assisted proofs” are mentioned. Even Gowers agrees that if his projects succeeds, there will be no (pure) mathematicians in the current (or 300, or 2000 years old) sense. The issue can be the topic of a long discussion, of a serious monograph which will be happily published by Princeton University Press, but I am not sure that you are interested in going into it deeply. Let me say only point out that mathematics has any value only as human activity. It is partially a science, but to a big extent it is an art. All proofs belong to the art part. They are not needed at all for applications of mathematics. If a proof cannot be understood by humans (like the purported proofs in your examples), they have no value. Or, rather, their value is negative: a lot of human time and computer resources were wasted.

Now, a few words about your examples. The Kepler conjecture is not an interesting mathematical problem. It is not related to anything else, and its solution is isolated also. Physicists had some limited interest in it, but for them it obvious for a long time (probably, from the very beginning) that the conjectured result is true.

4 colors problem is not interesting either. Think for a moment, who may care  if every map can be colored by only 4 colors? In the real word we have much more colors at our disposal, and in mathematics we have a beautiful, elementary, but conceptual proof of a theorem to the effect that 5 colors are sufficient. This proof deserves to be studied by every student of mathematics, but nobody rushed to study the Appel-Haken “proof” of 4-colors “theorem”. When a graduate student was assigned the task to study it (and, if I remember correctly, to reproduce the computer part for the first time), he very soon found several gaps. Then Haken published an amusing article, which can be summarized as follows. The “proof” has such a nature that it may have only few gaps and to find even one is extremely difficult. Therefore, if somebody did found a gap, it does not matter. This is so ridiculous that I am sure that my summary is not complete. Today it is much easier than at that time to reproduce the computer part, and the human part was also simplified (it consists in verifying by hand some properties of a bunch of graphs, more than 1,000 or even 1,500 in the Appel-Haken “proof”, less than 600 now.)

Wiles deserved a Fields medal not because he proved LFT; he deserved it already in 1990, before he completed his proof. In any case, the main and really important result of his work is not the proof of the LFT (this is for popular books), but the proof of the so-called modularity conjecture for nearly all cases (his students later completed the proof of the modularity conjecture for the exceptional cases). Due to some previous work by other mathematicians, all very abstract and conceptual, this immediately implies the LFT. Before this work (mid-1980ies), there was no reason even to expect that the LFT is true. Wiles himself learned about the LFT during his school years (every future mathematician does) and dreamed about proving it (only few have such dreams). But he did not move a finger before it was reduced to the modularity conjecture. Gauss, who was considered as King of Mathematics already during his lifetime, was primarily a number theorist. When asked, he dismissed the LFT as a completely uninteresting problem: “every idiot can invent zillions of such problems, simply stated, but requiring hundreds years of work of wise men to be solved”. Some banker already modified the LFT into a more general statement not following from the Wiles work and even announced a monetary prize for the proof of his conjecture. I am not sure, but, probably, he wanted a solution within a specified time frame; perhaps, there is no money for this anymore.


Let me tell you about another, mostly forgotten by now , example. It is relevant here because, like the 3x+1 problem (the Collatz conjecture), it deals with iterations of a simple rule and by another reason, which I will mention later. In other words, both at least formally belong to the field of dynamical systems, being questions about iterations.

My example is the Feigenbaum conjecture about iterations of maps of an interval to itself. Mitchell Feigenbaum is theoretical physicist, who was lead to his conjecture by physical intuition and extensive computer experiments. (By the way, I have no objections when computers are used to collect evidence.) The moment it was published, it was considered to be a very deep insight even as a conjecture and as a very important and challenging conjecture. The Feigenbaum conjecture was proved with some substantial help of computers only few years later by an (outstanding independently of this) mathematical physicists O. Lanford. For his computer part to be applicable, he imposed additional restrictions on the maps considered. Still, the generality is dear to mathematicians, but not to physicists, and the problem was considered to be solved. In a sense, it was solved indeed. Then another mathematician, D. Sullivan, who recently moved from topology to dynamical systems, took the challenge and proved the Feigenbaum conjecture without any assistance from the computers. This is quite remarkable by itself, mathematicians usually abandon problem or even the whole its area after a computer-assisted argument. Even more remarkable is the fact that his proof is not only human-readable, but provides a better result. He lifted the artificial Lanford’s restrictions.

The next point (the one I promised above) is concerned with standards Lanford applied to the computer-assisted proofs. He said and wrote that a computer-assisted proof is a proof in any sense only if the author not only understands its human-readable part, but also understands every line of the computer code (and can explain why this code does that is claimed it does). Moreover, the author should understand all details of the operations system used, up to the algorithm used to divide the time between different programs. For Lanford, a computer-assisted proof should be understandable to humans in every detail, except it may take too much time to reproduce the computations themselves.

Obviously, Lanford understood quite well that mathematics is a human activity.

Compare this with what is going on now. People freely use Windows OS (it seems that even at Microsoft nobody understands how and what it does), and the proprietary software like Mathematica™, for which the code is a trade secret and the reverse engineering is illegal. From my point of view, this fact alone puts everything done using this software outside not only of mathematics, but of any science.


Next post: To appear.

Tuesday, January 1, 2013

Reply to a comment

Previous post: Freedom of speech in mathematics

This is a reply to a recent comment by an Anonymous.

Dear Anonymous,

Thank you very much for reading these notes and for writing a serious and stimulating comment. I was thinking about it for a few days, and I am still not sure that my reply will be convincing. But let me try.

The initial goal of this blog was to provide a context for my arguments in Gowers's blog and in another blog. The latter was quoted by another anonymous in Gowers’s blog, and I had no other choice as to try to explain them (the original comment was addressed to people who know me and my views fairly well). So, the concentration on Gowers's views and activities was only natural; this was the intention. Now this topic is more or less exhausted, and expanding the scope of the blog, or even changing it completely may be in order.

Gowers himself described his goals and said that achieving them will eliminate mathematics as we know it. There is nothing apocalyptic in my discussion of his ideas. I do not anticipate that he or his followers will achieve his goals. I do not think that humans are some sort of computers, and I do not think that computers can do real mathematics (definitely, they can do a lot of mathematical things better than humans, but only when a class of problems was completely understood by humans). But he may achieve his goal in an Orwellian way by changing the meaning of the word “mathematics”. He already shifted the preferences of a big part of mathematical community. It took about ten years. If he will be able to do a comparable feat in the next ten years, and then, may be with his followers, once more, “mathematics” will mean “Hungarian-style combinatorics”. And I do believe that the Hungarian-style combinatorics is a field where computers eventually will be superior to humans because a nearly exhaustive search for a proof will be more efficient than human insights (like it happened with chess, which is actually a branch of combinatorics).

Independently of this scenario, I believe that having a person intended to eliminate mathematics (even if his goal is not achievable) in position of such influence as Gowers is extremely unhealthy and dangerous.

I agree that an “open and critical analysis of very influential individuals or groups in the mathematics research community” is highly desirable. But I am not quite comfortable with the way you wrote about this: “what the discussion should be about”. First of all, I am not comfortable with writing this either, but this is my blog and I write about whatever I like and whenever I like. Perhaps, you meant to apply “should” not to me, but to the mathematical community itself. I will assume that this is what you meant.

I believe that such a discussion is hardly possible. As a rule, mathematicians strongly dislike to openly discuss any contentious issues. One may see this everywhere: from insignificant issues on a department of mathematics to major decision made by the AMS or Fields Medals Committee, for example. I would suggest these posts for publication in the Notices of the AMS (under my real name) if I would believe that there is some chance for them to be published.

To Editors of the Notices of the AMS: this is a challenge. Prove that I am wrong!

Anyhow, I am willing to participate in such an open discussion. There is no venue for this now. Still, I would be glad to expand this blog into such a venue. For example, it may be easily transformed into a collective blog, and, for example, you will be able to post here. You will need only a Google account for this, and I will need to know the name of the account and some way of verification that it belongs to the Anonymous who wrote the comment. I reserve the right to be the owner of the blog and its moderator (right now it is not moderated, comments appear without my approval). And, may be, I will eventually transfer it to somebody else.

Finally, I disagree that mathematics was “long dominated by geometry, topology, arithmetic geometry, etc.” By some reason the word “geometry” is very popular for a few decades, and topology is usually considered to be a branch of geometry. So, the word “geometry” was appended to almost any good mathematical theory. Say, Non-Commutative Geometry is actually a branch of functional analysis. Arithmetic Geometry is a branch of algebraic number theory. Topology is not a branch of geometry in the classical sense of the word “geometry”. Algebraic Topology is a branch of algebra. Well, I realize that this is a sort of scandalous statement. It took me many years to come to this conclusion. There was a subfield of topology called Geometric Topology (it is hardly alive by now); this would be a nonsense would topology be indeed a branch of geometry.

So, in my opinion mathematics was long dominated by good mathematics, but this is not the case anymore.


Next post: Happy New Year!

Monday, June 4, 2012

T. Gowers about replacing mathematicians by computers. 2

Previous post: T. Gowers about replacing mathematicians by computers. 1.


As we do know too well by now, not all scientific or technological progress is unqualifiedly beneficial for the humanity. As one of the results of scientific research the humanity now has the ability to exterminate not only all humans, but also all the life on Earth. Dealing with this problem determined to a big extent the direction of development of western countries since shortly after WWII. There are not so dramatic examples also; a scientific research about humans may damage only minor part of the population, or even just the subjects of this research (during the last decades, such a research is carefully monitored in order to avoid any harm to the subjects).

Gowers’s project is an experiment on humans. I believe that replacing mathematicians by computers will do a lot of harm at least to the people who could find their joy and the meaning of life in doing mathematics. But the results, if the project succeeds, are not predictable. If we agree, together with André Weil, that mathematics is an indispensable part of our culture, then it hardly possible to predict what will happen without it.


There is also question if Gowers’s goal is achievable at all. He limited it in at least two significant respects. First, he would be satisfied even if computer will not surpass humans (as opposed to the designers of “Deep Blue”, who wanted and managed to surpass the best chess players). Second, he always speaks about proving theorems, and never about discovering analogies, introducing new definitions, etc. These aspects are the most important part of mathematics, not the theorems (compare the already quoted maxim by Manin). But only theorems matter in the Hungarian-style mathematics. Perhaps, this is the reason why Gowers never mentions these aspects of mathematics. It is hard to tell if this limited goal can be achieved. Given a statement, a computer definitely able sometimes to find a proof of it (or disprove it) by a sufficiently exhaustive search. If it is not able to give an answer, the problem remains open, exactly as in human mathematics. What kind of statements a computer will be able to deal with, is another question.

Some of the best problems are not a true-false type of questions. For example, the problem of defining a “good” cohomology theory for algebraic varieties over finite fields (to a big extent solved by Grothendieck), or the problem of defining higher algebraic K-functors (solved by Quillen). It is impossible for me to imagine a computer capable to invent new definitions or suggest problems based on vague analogies like these two problems, responsible for perhaps a half of really good mathematics after 1950.


It seems that I could feel safe: even in the gloomy Gowers’s future, there will be place for human mathematicians. In fact, the future theorems, stated as conjectures, always served as one of the main, or simply the main stimulus to invention of new definitions. In addition, the success of Gowers’s project will mean the end of mathematics as a profession. There will be no new mathematicians, of Serre’s level, or any other, simply because there will be no way to earn a living by doing human mathematics.

Next post: The twist ending. 1

T. Gowers about replacing mathematicians by computers. 1

Previous post: The Politics of Timothy Gowers. 3.


Starting with his “GAFA Visions” essay, T. Gowers promotes the idea that it is possible and desirable to design computers capable of proving theorems at a very high level, although he will be satisfied if such computers still will be not able to perform at the level of the very best mathematician, for example, at the level of Serre or Milnor. I attempted to discuss this topic with him in the comments to his post about this year Abel prize.

I had no plans for such a discussion, and the topic wasn’t selected by me. I made a spontaneous comment in another blog, which was a reaction to a reaction to a post about E. Szemerédi being awarded this year Abel prize. But I stated my position with many details in Gowers’s blog. T. Gowers replied to only three of my comments, and only partially. It seems that for many people it is hard to believe that a mathematician of the stature of T. Gowers may be interested in eliminating mathematics as a human activity, and this is why my comments in that blog made their way to Gowers’s one (one can find links in the latter).

For Gowers, the goal of designing computers capable of replacing mathematicians is fascinating by itself. Adding some details to his motivation, he claims that such computers cannot be designed without deep understanding of how humans prove theorems. He will not consider his goal achieved if the theorem-proving computer will operate in the manner of “Deep Blue” chess-playing computer, namely, by a huge and a massively parallel (like “Deep Blue”) search. Without any explanation, even after directly asked about this, he claims that in fact a computer operating in the manner of “Deep Blue” cannot be successful in proving theorems. In his opinion, such a computer should closely imitate humans (whence we will learn something about humans by designing such a computer), and that it is much simpler to imitate humans doing mathematics than other tasks.

In addition, Gowers holds the opinion that elimination of mathematics would be not a big loss, comparing it to losing many old professions to the technology.


Gowers’s position contradicts to the all the experience of the humanity. None of successful technologies imitates the way the humans act. No means of transportation imitates walking or running, for example. On the other end and closer to mathematics, no computer playing chess imitates human chess players.

Note that parallel processing (on which “Deep Blue” had heavily relied) is exactly that Gowers attempts to do with mathematics in his Polymath project. It seems that this project approaches the problem from the other end: it is an attempt to make humans to act like computers. This will definitely simplify the goal of imitating them by computers. Will they be humans after this?


Gowers’s position is a position of a scientist interested in learning how something functions and not caring about the cost; in his case not caring about the very survival of mathematics. In my opinion, this means that he is not a mathematician anymore. Of course, he proves theorems, relies on his mathematical experience in his destructive project, but these facts are uninteresting trivialities. I expect from mathematician affection toward mathematics and a desire of its continuing flourishing. (How many nominal mathematicians such a requirement will disqualify?)


Next post: T. Gowers about replacing mathematicians by computers. 2.

Wednesday, May 23, 2012

The Politics of Timothy Gowers. 3

Previous post: The Politics of Timothy Gowers. 2.


The preparations of Gowers to the elimination of mathematics are not limited to the elevation of the status of the most amenable to the computerization part of mathematics. T. Gowers uses other means also. His web page "Mathematical discussions” aims at developing some “more natural” ways to discover key mathematical ideas. By “more natural” Gowers apparently means “not requiring a sudden insight”. Some titles of his mini-articles are very telling. A good example is “How to solve basic analysis exercises without thinking.” To do mathematics without thinking is exactly what is needed for replacing mathematicians by computers. I consider this project as a failed one: no real way to discover key ideas without insight, not to say without thinking, is even hinted at in these notes. One of approaches used by Gowers is to reverse the history and shows how to use more recent ideas to discover the older ones, like in his note about the zeta-function. Euler’s and Riemann’s work on the zeta-function stimulated a lot of developments in analysis, and to use these developments to rediscover the main result of Euler looks like cheating. In other cases, like in his note about cubic equations, Gowers more or less rediscovers the original approaches. His approach to the cubic equations is very close to the one presented in every book about Galois theory paying some attention to the history.

My favorite part of this page is entitled "Topology”. It consists of only one phrase: "Watch this space”. This did not change at least since April 18, 2001 (according to the web archive). So, I am watching this space for more than a decade. Topology is the quintessential “first culture” mainstream mathematics, mathematics of Serre and Milnor. Completely missing, even without such a phrase, is algebraic geometry. It seems that the two most important developments in the twenties century mathematics are not amenable even to an attempt to eliminate or at least reduce the roles of insights and thinking.

The posts under the tag ‘Demystifying proofs’ in Gowers blog have the same goal and overlap with his “Mathematical discussions”.


Another project Gowers is actively promoting is called the “Polymath”. See posts in his blog under tags like “polymath”,  “polymath1”,  etc. Perhaps, the best place to start is the posts “Is massively collaborative mathematics possible?” and “Background to a polymath project”. The idea is, apparently, to prove theorems not by the usual process of an individual discovery or close interaction of few mathematicians, but by a massively parallel working of many mathematicians interacting on a special web site. This immediately brings to the memory famous computer “Deep Blue”, who won (at the second attempt) a chess match with Garry Kasparov, perhaps the best chess player of all times. “Deep Blue” relied on massively parallel computation, combined with the chess players’ insights (it turned out that without substantial help from human chess players the computer cannot beat Kasparov). Gowers attempt to arrange something similar but using only humans. This is, clearly, could be a good step toward replacing human mathematicians by computers, if successful.

To the best of my knowledge, the first attempt was somewhat successful, in the sense that it resulted in a published paper. But the result proved was not surprising at all, and the main contributions to the proof were made by very few mathematicians (perhaps, no more than three). The result was certainly accessible to a good mathematician working alone.

Much more can be found at “The polymath blog” and the Polymath1wiki (a Wiki-like site). Amazingly, 1/3 of the described there nine “Polymath projects” are devoted to solving specific problems from International Mathematical Olympiads. As is well known, a sufficiently bright and trained high school student can solve such problem in one-two hours.

So, it seems that the idea failed.

(It is worth to note that the domain name michaelnielsen.org, a subdomain of which is the Polymath1wiki, belongs to Michael Nielsen, who presents himself as “a writer, scientist, and programmer”. Perhaps, he is neither a writer, nor a scientist, nor a programmer, if these notions are understood in a sufficiently narrow sense. But we are not living at the times of André Weil, and nowadays he is definitely all of the above. The point is that even nowadays he is not classified as a mathematician.)


I think that all this gives a good idea of what I understand by the politics of Gowers.

He is also actively involved in a battle with big publishers over the prices of scientific journals. In this case his goals are quite close to my heart (in contrast with the already discussed activities), and I even signed an inspired by Gowers declaration of non-collaboration with the infamous publisher Reed-Elsevier. Still, I believe that his approach is misguided. Elsevier may be the most evil scientific publisher, but not the only one evil, and even the university presses and learned societies act in an evil manner more often than one may expect. From my point of view, the root of the problem is in the scientific community itself, and the solution can be found also only within this community. Everything depends on the transfer of the copyright from authors to publishers. Scientists need to refuse to transfer the copyright. But this is another topic.


Next post: T. Gowers about replacing mathematicians by computers. 1

The Politics of Timothy Gowers. 2

Previous post: The Politics of Timothy Gowers. 1.


Since about 2000, T. Gowers became a prominent advocate of two ideas. First, he works on changing the mathematical public opinion about relative merits of various mathematical results and branches of mathematics in favor of his own area of expertise. Second, he advocates the elimination of mathematics as a significant human activity, and a gradual replacement of mathematicians by computers and moderately skilled professionals assisting these computers. The second goal is more remote in time; he estimates that it is at least decades or even a century away. The first goal is already partially accomplished. I believe that his work toward these two goals perfectly fits the definitions 3a, 5a, and 5b from Merriam-Webster.

I would like to point out that public opinion about various branches of mathematics changes continuously and in a manner internal to the mathematics itself. An area of mathematics may be (or may seem to be) completely exhausted; whatever is important in it, is relegated to textbooks, and a research in it wouldn’t be very valued. Somebody may prove a startling result by an unexpected new method; until the power of this method is exhausted, using it will be a very fashionable and valuable direction of research. This is just two examples.

In contrast with this, T. Gowers relies on ideological arguments, and, as one may guess, on his personal influence (note that most of the mathematical politics is done behind the closed doors and leaves no records whatsoever). In 2000, T. Gowers published two essays: “Two cultures in mathematics” in a highly popular collection of articles “Mathematics: Frontiers and Perspectives” (AMS, 2000), and “Rough structures and classification” in a special issue “GAFA Vision” of purely research journal “Geometric and functional analysis”.

The first essay, brilliantly written, put forward a startling thesis of the existence of two different cultures in mathematics, which I will call the mainstream and the Hungarian cultures for short. Most mathematicians are of the opinion that (pure) mathematics is a highly unified subject without any significant division in “cultures”. The mainstream culture is nothing else as the most successful part of mathematics in the century immediately preceding the publication of the “Two cultures” essay. It encompasses almost all interesting mathematics of the modern times. The Hungarian culture is a very specific and fairly elementary (this does not mean easy) sort of mathematics, having its roots in the work of Paul Erdös.

The innocently titled “GAFA Visions” essay has as it central and most accessible part a section called “Will Mathematics Exist in 2099?” It outlines a scenario eventually leading to a replacement mathematicians by computers. The section ends by the following prediction, already quoted in this blog.

"In the end, the work of the mathematician would be simply to learn how to use theorem-proving machines effectively and to find interesting applications for them. This would be a valuable skill, but would hardly be pure mathematics as we know it today.”
All arguments used to support the feasibility of this scenario are borrowed from the Hungarian culture. On the one hand, this is quite natural, because this is the area of expertise of Gowers. But then the conclusion should be “The work in the Hungarian culture would be simply to learn how to use Hungarian-theorems proving machines effectively”. This would eliminate the Hungarian culture, if it indeed exists, from mathematics, but will not eliminate pure mathematics.

This second project does not seem to be very realistic unless the mathematical community will radically change its preferences from favoring the mainstream mathematics to favoring the Hungarian one. And indeed, it seems that Gowers working simultaneously on both projects. He advocates Hungarian mathematics in his numerous lectures all over the world. He suddenly appears as the main lecturer on such occasions as the announcement of the Clay Institute million dollars prizes. It was a shock when he gave the main lecture about Milnor’s work at the occasion of the award of Abel prize to Milnor. Normally, such lectures are given by an expert in an area close to the area of the person honored. Gowers is in no way an expert in any of the numerous areas Milnor worked in. Moreover, he hardly had any understanding of the most famous results of Milnor; in fact, he consulted online (in a slightly veiled form at Mathoverflow.org) about some key aspects of this result. This public appearance is highly valuable for elevating the status of the Hungarian mathematics: a prominent representative of the last presents to the public some of the highest achievements of the mainstream mathematics.

The next year Gowers played the same role at the Abel prize award ceremony again. This time he spoke about his area of expertise: the award was given to a representative of Hungarian mathematics, namely, to E. Szemerédi. Be a presenter of a laureate work two year in a row is also highly unusual (I am not aware about any other similar case in mathematics) and is hardly possible without behind the closed doors politics. The very fact of awarding Abel prize to E. Szemerédi could be only the result of complicated political maneuvers. E. Szemerédi is a good and interesting mathematician, but not an extraordinary one. There are literally hundreds of better mathematicians. The award of the Abel prize to him is not an indicator of how good mathematician he is; it informs the mathematical community that the system of values of the mathematical establishment has changed.

How it could happen without politics that Gowers was speaking about the work of Milnor at the last year Abel prize ceremony? Gowers speaking about the work of Szemerédi is quite natural, but Gowers speaking about the work of Milnor (and preparing this presentation with the help of Mathoverflow) is quite bizarre. It is obvious that Gowers is the most qualified person in the world to speak about the works of Szemeredi, but there are thousands of mathematicians more qualified to speak about Milnor’s work.


Next post: The Politics of Timothy Gowers. 3.

Friday, April 13, 2012

The times of André Weil and the times of Timothy Gowers. 2

Previous post: The times of André Weil and the times of Timothy Gowers. 1.


Different people hold different views about the future of humankind, even about the next few decades. No matter what position is taken, it is not difficult to understand the concerns about the future of the human race in 1948. They are still legitimate today.

It seems to me that today we have much more evidence that we may be witnessing an eclipse of our civilization than we had in 1948. While the memories of two World Wars apparently faded, these wars are still parts of the modern history. The following decades brought to the light many other hardly encouraging phenomena. Perhaps, the highest point of our civilization occured on July 20, 1969, the day of the Apollo 11 Moon landing. While the Apollo 11 mission was almost purely symbolic, it is quite disheartening to know that nobody can reproduce this achievement today or in a near future. In fact, the US are now not able to put humans even on a low orbit and have to rely on Russian rockets. This does not mean that Russia went far ahead of the US; it means only that Russians preserved the old technologies better than Americans. Apparently, most of western countries do not believe in the technological progress anymore, and are much more willing to speak about restraining it, in contrast with the hopes of previous generations. Approximately during the same period most of arts went into a decline. This should be obvious to anybody who visited a large museum having expositions of both classical and modern arts. In particular, if one goes from expositions devoted to the classical arts to the ones representing more and more modern arts, the less people one will see, until reaching totally empty halls. It is the same in the New York Museum of Modern Art and the Centre Pompidou in Paris.

Mathematics is largely an art. It is a science in the sense that mathematicians are seeking truths about some things existing independently of them (almost all mathematician feel that they do not invent anything, they do discover; philosophers often disagree). It is an art in the sense that mathematician are guided mainly by esthetic criteria in choosing what is worthwhile to do. Mathematical results have to be beautiful. As G.H. Hardy said, there is no permanent place in the world for ugly mathematics. In view of this, the lesson of the art history are quite relevant for mathematicians.


How Timothy Gowers sees the future of mathematics? He outlined his vision in an innocently entitled paper “Rough structure and classification” in a special issue “Visions in Mathematics” of “Geometric and Functional Analysis”, one of the best mathematical journals (see Geom. Funct. Anal. 2000, Special Volume, Part I, 79–117). Section 2 of this paper is entitled “Will mathematics exists in 2099?” and outlines a scenario of gradual transfer of the work of mathematicians to computers. He ends this section by the following passage.

“In the end, the work of the mathematician would be simply to learn how to use theorem-proving machines effectively and to find interesting applications for them. This would be a valuable skill, but it would hardly be pure mathematics as we know it today.”
Surely, this will be not mathematics. This prognosis of T. Gowers is even gloomier than the one which was unthinkable to A. Weil. The destiny of mathematics, as seen by Gowers, is not to be just a technique in the service of other techniques; its fate is non-existence. The service to other techniques will be provided by computers, watched over by moderately skilled professionals.

We see that nowadays even mathematicians of his very high stature do not consider mathematics as necessary, and ready to sacrifice it for rather unclear goals (more about his motivation will be in the following posts). Definitely, an elimination of mathematics as a human activity will not improve the conditions of human life. It will not lead to new applications of mathematics, because for applications mathematics is not needed at all. Mathematics is distinguished from all activities relaying on it by the requirement to provide proofs of the claimed results. But proofs are not needed for any applications; heuristic arguments supported by an experiment are convincing enough. André Weil and, in fact, most of mathematicians till recently considered mathematics as an irreplaceable part of our culture. If mathematics is eliminated, then a completely different sort of human society will emerge. It is far from being clear even that the civilization will survive. But even if it will, are we going to like it?

This is the main difference between the times of André Weil and the times of Timothy Gowers. In 1948 at least mathematicians cared about the future of mathematics, in 2012 one of the most influential mathematicians declares that he does not care much about the very existence of mathematics. Timothy Gowers is not the only mathematician with such views; but nobody of his stature in the mathematical community expressed them so frankly and clearly. He is a very good writer.


Next post: The times of André Weil and the times of Timothy Gowers. 3.

The times of André Weil and the times of Timothy Gowers. 1

Previous post: A reply to some remarks by André Joyal.


This is the first in a series of posts prompted by the award of 2012 Abel Prize to E. Szemerédi. He is, perhaps, the most prominent representative of what is often called the Hungarian style combinatorics or the Hungarian style mathematics and what until quite recently never commanded a high respect among mainstream mathematicians. At the end of the previous millennium, Timothy Gowers, a highly respected member of the mathematical community, and one of the top members of the mathematical establishment, started to advance simultaneously two ideas. The first idea is that mathematics is divided into two cultures: the mainstream conceptual mathematics and the second culture, which is, apparently, more or less the same as the Hungarian style combinatorics; while these two styles of doing mathematics are different, there is a lot parallels between them, and they should be treated as equals. This is in a sharp contrast with the mainstream point of view, according to which the conceptual mathematics is incomparably deeper, and Hungarian combinatorics consists mostly of elementary manipulations with elementary objects. Here “elementary” means “of low level of abstraction”, and not “easy to find or follow. The second idea of Gowers is to emulate the work of a mathematician by a computer and, as a result, replace mathematicians by computers and essentially eliminate mathematics. In fact, these two ideas cannot be completely separated.

In order to put these issues in a perspective, I will start with several quotes from André Weil, one of the very best mathematicians of the last century. Perhaps, he is one of the two best, the other one being Alexander Grothendieck. In 1948 André Weil published in French a remarkable paper entitled “L’Avenier des mathémathiques”. Very soon it was translated in the American Mathematical Monthly as “The Future of Mathematics” (see V. 57, No. 5 (1950), 295-306). I slightly edited this translation using the original French text at the places where the translation appeared to be not quite clear (I don’t know if it was clear in 1950).

A. Weil starts with few remarks about the future of our civilization in general, and then turns to the mathematics and its future.


“Our faith in progress, our belief in the future of our civilization are no longer as strong; they have been too rudely shaken by brutal shocks. To us, it hardly seems legitimate to “extrapolate” from the past and present to the future, a Poincaré did not hesitate to do. If the mathematician is asked to express himself as to the future of his science, he has a right to raise the preliminary question: what king of future is mankind preparing for itself? Are our modes of thought, fruits of the sustained efforts of the last four or five millennia, anything more than a vanishing flash? If, unwilling to stumble into metaphysics, one should prefer to remain on the hardly more solid ground of history, the same question reappear, although in different guise, are we witnessing the beginning of a new eclipse of civilization. Rather than to abandon ourselves to the selfish joys of creative work, is it not our duty to put the essential elements of our culture in order, for the mere purpose of preserving it, so that at the dawn of a new Renaissance, our descendants may one day find them intact?”


“Mathematics, as we know it, appears to us as one of the necessary forms of our thought. True, the archaeologist and the historian have shown us civilizations from which mathematics was absent. Without Greeks, it is doubtful whether mathematics would ever have become more than a technique, at the service of other techniques; and it is possible that, under our very eyes, a type of human society is being evolved in which mathematics will be nothing but that. But for us, whose shoulders sag under the weight of the heritage of Greek thought and walk in path traced out by the heroes of the Renaissance, a civilization without mathematics is unthinkable. Like the parallel postulate, the postulate that mathematics will survive has been stripped of its “obviousness”; but, while the former is no longer necessary, we couldn't do without the latter.”


““Mathematics”, said G.H. Hardy in a famous inaugural lecture “is a useless science. By this I mean that it can contribute directly neither to the exploitation of our fellowmen, nor to their extermination.

It is certain that few men of our times are as completely free as the mathematician in the exercise of their intellectual activity. ... Pencil and paper is all the mathematician needs; he can even sometimes get along without these. Neither are there Nobel prizes to tempt him away from slowly maturing work, towards brilliant but ephemeral result.”


One of the salient points made by A. Weil in this essay (and other places) is the fragility of mathematics, its very existence being a result of historical accident, namely of the interest of some ancient Greeks in a particular kind of questions and, more importantly, in a particular kind of arguments. Already in 1950 we could not take for granted the continuing existence of mathematics; it seems that the future of mathematics is much less certain in 2012 than it was in 1950.


Next post: The times of André Weil and the times of Timothy Gowers. 2.