About the title

About the title

I changed the title of the blog on March 20, 2013 (it used to have the title “Notes of an owl”). This was my immediate reaction to the news the T. Gowers was presenting to the public the works of P. Deligne on the occasion of the award of the Abel prize to Deligne in 2013 (by his own admission, T. Gowers is not qualified to do this).

The issue at hand is not just the lack of qualification; the real issue is that the award to P. Deligne is, unfortunately, the best compensation to the mathematical community for the 2012 award of Abel prize to Szemerédi. I predicted Deligne before the announcement on these grounds alone. I would prefer if the prize to P. Deligne would be awarded out of pure appreciation of his work.



I believe that mathematicians urgently need to stop the growth of Gowers's influence, and, first of all, his initiatives in mathematical publishing. I wrote extensively about the first one; now there is another: to take over the arXiv overlay electronic journals. The same arguments apply.



Now it looks like this title is very good, contrary to my initial opinion. And there is no way back.
Showing posts with label exploitation. Show all posts
Showing posts with label exploitation. Show all posts

Saturday, April 14, 2012

The times of André Weil and the times of Timothy Gowers. 3

Previous post: The times of André Weil and the times of Timothy Gowers. 2.


Now we can hardly say that mathematics is a useless science in the sense of G.H. Hardy. It contributes to the exploitation in various ways. For example, the theory of stochastic differential equations, a highly sophisticated branch of mathematics, is essential for the financial manipulations leading to a redistribution of wealth from the middle class to the top 1% of the population. The encryption schemes, designed by mathematicians and implemented by software engineers, prevent access of the general public to all sorts of artistic and intellectual goods. This is a new phenomenon, a result of the development of the Internet.

There is no need to detail the enormous contribution of mathematics to the business of extermination; it is obvious now (this wasn’t known to the general public when A. Weil wrote his article).

Mathematicians are not as free now as they were at the times of André Weil. There are (almost?) no more non-mathematical jobs which will earn a decent livehood and will leave enough energy for mathematical research. This situation is aggravated by the fact that if someone is not employed by a sufficiently rich university, then he or she has no access to the current mathematical literature, which is mostly electronic now, and, if sold to individuals, then the prices are set to be prohibitive. The access to these electronic materials (which cost almost nothing to the publishers to produce) is protected by the above mentioned encryption tools. The industry of the scientific publishing does not have publishing as its main activity any more. Its main business now is the restricting access to scientific papers by a combination of encryption, software, and lobbying for favorable to this industry laws. The main goal pursued is the transfer of the taxpayers dollars to the pockets of its executives and shareholders (this topics deserves a separate detailed discussion).

There are no Nobel prizes in mathematics, but there are many others. The Norwegian Abel prize is specifically intended to be a “Nobel prize” in mathematics. Long before it was established (the first one was awarded in 2003), another prize, the Fields medal, achieved incredible prestige and influence in mathematics, despite the negligible monetary award associated with it. In contrast with the Nobel and Abel prizes, the Fields medal may be awarded only to “young” mathematicians. The meaning of the word “young” was initially not specified, but the mathematical establishment slowly arrived at a precise definition. Somebody is young for the purposes of awarding a Fields medal, if he did not achieved the age 41 in the year of the International Congress of Mathematicians, at which the medal is to be awarded. The Congresses are hold every 4 years (only World War II caused an interruption). So, the persons born in the year of a Congress have additional 4 year to work and to have their work recognized.

Even if this stupid rule would be discarded, the age limitation tends to reward fast people strong at applying existing methods to famous problems. The Fields medals (and many other prizes in mathematics) are usually awarded to the mathematician who made the last step in a solution of a problem, and only rarely to the one who discovered a new method or new line of thought. There are only little chances for “slow maturing work” to be rewarded by this most prestigious award (more prestigious by an order of magnitude than any other prize, except, may be, the Abel prize, which is up to now was awarded almost exclusively to the people of the retirement age).

It was possible to ignore all the prizes in 1948. The Fields medals were awarded only once, in 1936, to two mathematicians. Other prizes, where they existed, did not carry any serious prestige. But in 1950, 1954, and 1958 Fields medals went to exceptionally brilliant mathematicians, and since then this was a prize coveted by anybody who thought that there is a chance to get it.

Now there are many other prizes, each one striving to carry as much weight and influence as possible. An interesting example is the story of the Salem prize. The Salem prize was established by the widow of Raphaël Salem in order to encourage work in Salem's field of interest, primarily the theory of Fourier series. Note that Fourier series and their versions are used throughout almost whole mathematics; it is only natural to think that the prize was intended to mathematicians working on problems really close to Salem’s interests. The international committee (occasionally changing by an unknown to the public mechanism) gradually increased the scope of the prize. By 1991 no connection with Salem’s interests could be observed. Now it is the most prestigious prize for young analysts without any restrictions (and the analysis is understood in a very broad sense).

In fact, this change (as also a suspected preference for mathematicians belonging to one or two particular schools) was not welcomed by Salem’s family, and it withdraw the funding for the prize. The committee did not inform the mathematical public about these events and continued to award the prize with $0.00 attached. I am not aware of the current situation; may be the committee managed to raise some money. (Please, note that I cannot name my sources, as it is often the case in the news reporting, and hence cannot provide any proof. I can only vouch that my sources are reliable and well informed.)

The negligible monetary value of most mathematical prizes is not of any importance. The prestige is immediately transformed into the salary rises, offers from rich universities capable of doubling the salary, etc. The lifetime income could be increased by a much bigger amount than the monetary value of a Nobel Prize.

These are the signs of the lost innocence directly related to the article of André Weil. There are many other signs, and one can talk about them indefinitely. In any case, there are no more ivory towers for mathematicians; their jobs depend on many complicated and not always natural implicit agreements in the society, various laws and regulations detailing the laws, etc. From 1945 till about 1985 all these agreements and laws worked very favorably for mathematics. But, as it turned out, the same laws and understandings could be easily used to control mathematicians, sometimes directly, sometimes in hardly discernible ways, and the same arguments that were used to increase the number of jobs 60 or 50 years ago, could, in principle, be used to eliminate these jobs completely.


Next post: My affair with Szemerédi-Gowers mathematics.