About the title

About the title

I changed the title of the blog on March 20, 2013 (it used to have the title “Notes of an owl”). This was my immediate reaction to the news the T. Gowers was presenting to the public the works of P. Deligne on the occasion of the award of the Abel prize to Deligne in 2013 (by his own admission, T. Gowers is not qualified to do this).

The issue at hand is not just the lack of qualification; the real issue is that the award to P. Deligne is, unfortunately, the best compensation to the mathematical community for the 2012 award of Abel prize to Szemerédi. I predicted Deligne before the announcement on these grounds alone. I would prefer if the prize to P. Deligne would be awarded out of pure appreciation of his work.



I believe that mathematicians urgently need to stop the growth of Gowers's influence, and, first of all, his initiatives in mathematical publishing. I wrote extensively about the first one; now there is another: to take over the arXiv overlay electronic journals. The same arguments apply.



Now it looks like this title is very good, contrary to my initial opinion. And there is no way back.
Showing posts with label prizes. Show all posts
Showing posts with label prizes. Show all posts

Thursday, January 2, 2014

Graduate level textbooks I

Previous post: The role of the problems


Back in August Tamas Gabal asked me about my favorite graduate level textbooks in mathematics; later Ravi joined this request. I thought that the task will be very simple, but it turned out to be not. In addition, my teaching duties during the Fall term consumed much more energy than I could predict and even to imagine.

In this post I will try to explain why compiling a list of good books is so difficult. It is much easier to say from time to time “This book is great! You should read it.” Still, I will try to compile a list or lists of the books I like in the following post(s).

If one is looking for good collection of graduate level textbooks, there is no need to go further than the Springer series “Graduate Texts in Mathematics”. The books in the Springer “Universitext” series are more varied in their level (some are upper level undergraduate, others are research monographs), but one can find among them a lot of good textbooks. There is a more recent series “Graduate Studies in Mathematics” by the AMS. From my point of view, this series includes some excellent books, but is too varied both in terms of the level and in terms of quality. If you are looking for something on the border between an advanced graduate level textbook and a research monograph, the Cambridge University Press series “Cambridge Studies in Advanced Mathematics” is excellent. The bizarre economics and ideology of the modern scientific publishing resulted in the fact almost all good books in mathematics (including textbooks) is published by one of these 3 publishers: AMS, Springer, and Cambridge University Press. You will not miss much if will not go any further (but you will miss some book, certainly).

I cannot suggest a sequence of good books to study any sufficiently broad area, even not necessarily a sequence of my favorite books. If you want to be a research mathematician, you will have to learn a lot from bad books and badly written papers. It would do a lot of good for mathematics if afterwards you will write a good book about things you learned from badly written books and papers. Unfortunately, writing a book is not a really good idea at the early stages of the career of a mathematician nowadays. Expository writing is hardly valued. On the one hand, expository writing does not help to get grants and grants is the only thing valued by administrators at the level of deans and higher. It seems that the chairs of the mathematics departments started to follow this approach. Deans and chairs are the ones who have the last word in any hiring or promotion decision. Sometimes a mathematician is essentially forced to write a book in order to continue research. For example, the foundation of a theory may be absent from the literature, or some “known to everybody” results may require clarification. But this is rare.

Some freedom of what to do, in particular, the freedom to write books, arrives only with a tenured position. Still, a colleague of me gave me many years ago the following advise: “Do not write any books until you retire”. Right now I am not sure that any mathematical books will be written or used when I retire. I actually had abandoned a couple of projects because I don’t see any efficient and decent way to distribute mathematical books. I don’t think that charging $100.00 for a textbook is decent given that the cost of production is about $5.00—$20.00 per copy.

On the other hand, there is a lot of good textbook introducing into a particular sufficiently narrow branch of mathematics. It hardly make sense to list all of them. All this leads me to chosing “my favorite” as the guiding principle. And, after all, this is what Tamas Gabal asked me to do.


Next post: Graduate level textbooks II

Friday, August 23, 2013

The role of the problems

Previous post: Is algebraic geometry applied or pure mathematics?


From a comment by Tamas Gabal:

“I also agree that many 'applied' areas of mathematics do not have famous open problems, unlike 'pure' areas. In 'applied' areas it is more difficult to make bold conjectures, because the questions are often imprecise. They are trying to explain certain phenomena and most efforts are devoted to incremental improvements of algorithms, estimates, etc.”

The obsession of modern pure mathematicians with famous problems is not quite healthy. The proper role of such problems is to serve as a testing ground for new ideas, concepts, and theories. The reasons for this obsession appear to be purely social and geopolitical. The mathematical Olympiads turned in a sort of professional sport, where the winner increases the prestige of their country. Fields medals, Clay’s millions, zillions of other prizes increase the social role of problem solving. The reason is obvious: a solution of a long standing problem is clearly an achievement. In contrast, a new theory may prove its significance in ten year (and this will disqualify its author for the Fields medal), but may prove this only after 50 years or even more, like Grassmann’s theory. By the way, this is the main difficulity in evaluating J. Lurie's work.

Poincaré wrote that problems with a “yes/no” answer are not really interesting. The vague problems of the type of explaining certain phenomena are the most interesting ones and most likely to lead to some genuinely new mathematics. In contrast with applied mathematics, an incremental progress is rare in the pure mathematics, and is not valued much. I am aware that many analysts will object (say, T. Tao in his initial incarnation as an expert in harmonic analysis), and may say that replacing 15/16 by 16/17 in some estimate (the fractions are invented by me on the spot) is a huge progress comparable with solving one of the Clay problems. Still, I hold a different opinion. With these fractions the goal is certainly to get the constant 1, and no matter how close to 1 you will get, you will still need a radically new idea to get 1.

It is interesting to note that mathematicians who selected the Clay problems were aware of the fact that “yes/no” answer is not always the desired one. They included into description of prize a clause to the effect that a counterexample (a “no” answer) for a conjecture included in the list does not automatically qualifies for the prize. The conjectures are such that a “yes” answer always qualifies, but a “no” answer is interesting only if it really clarifies the situation.


Next post: Graduate level textbooks I.

Sunday, August 4, 2013

Did J. Lurie solved any big problem?

Previous post: Guessing who will get Fields medals - Some history and 2014.

Tamas Gabal asked the following question.

I heard a criticism of Lurie's work, that it does not contain startling new ideas, complete solutions of important problems, even new conjectures. That he is simply rewriting old ideas in a new language. I am very far from this area, and I find it a little disturbing that only the ultimate experts speak highly of his work. Even people in related areas can not usually give specific examples of his greatness. I understand that his objectives may be much more long-term, but I would still like to hear some response to these criticisms.

Short answer: I don't care. Here is a long answer.

Well, this is the reason why my opinion about Lurie is somewhat conditional. As I already said, if an impartial committee confirms the significance of Lurie’s work, it will remove my doubts and, very likely, will stimulate me to study his work in depth. It is much harder to predict what will be the influence of the actual committee. Perhaps, I will try to learn his work in any case. If he will not get the medal, then in the hope to make sure that the committee is wrong.

I planned to discuss many peculiarities of mathematical prizes in another post, but one of these peculiarities ought to be mentioned now. Most of mathematical prizes go to people who solved some “important problems”. In fact, most of them go to people who made the last step in solving a problem. There is recent and famous example at hand: the Clay $1,000,000.00 prize was awarded to Perelman alone. But the method was designed by R. Hamilton, who did a huge amount of work, but wasn’t able to made “the last step”. Perhaps, just because of age. As Perelman said to a Russian news agency, he declined the prize because in his opinion Hamilton’s work is no less important than his own, and Hamilton deserves the prize no less than him. It seems that this reason still not known widely enough. To the best of my knowledge, it was not included in any press-release of the Clay Institute. The Clay Institute scheduled the award ceremony like they knew nothing, and then held the ceremony as planned. Except Grisha Perelman wasn’t present, and he did not accept the prize in any sense.

So, the prizes go to mathematicians who did the last step in the solution of a recognized problem. The mathematicians building the theories on which these solutions are based almost never get Fields medals. Their chances are more significant when prize is a prize for the life-time contribution (as is the case with the Abel prize). There are few exceptions.

First of all, A. Grothendieck is an exception. He proved part of the Weil conjectures, but not the most important one (later proved by P. Deligne). One of the Weil conjectures (the basic one) was independently proved by B. Dwork, by a completely different and independent method, and published earlier (by the way, this is fairly accessible and extremely beautiful piece of work). The report of J. Dieudonne at the 1966 Congress outlines a huge theory, to a big extent still not written down then. It includes some theorems, like the Grothendieck-Riemann-Roch theorem, but: (i) GRR theorem does not solve any established problem, it is a radically new type of a statement; (ii) Grothendieck did not published his proof, being of the opinion that the proof is not good enough (an exposition was published by Borel and Serre); (iii) it is just a byproduct of his new way of thinking.

D. Quillen (Fields medal 1978) did solve some problems, but his main achievement is a solution of a very unusual problem: to give a good definition of so-called higher algebraic K-functors. It is a theory. Moreover, there are other solutions. Eventually, it turns out that they all provide equivalent definitions. But Quillen’s definitions (actually, he suggested two) are much better than others.

So, I do not care much if Lurie solved some “important problems” or not. Moreover, in the current situation I rather prefer that he did not solved any well-known problems, if he will get a Fields medal. The contrast with the Hungarian combinatorics, which is concentrated on statements and problems, will make the mathematics healthier.

Problems are very misleading. Often they achieve their status not because they are really important, but because a prize was associated with them (Fermat Last Theorem), or they were posed by a famous mathematicians. An example of the last situation is nothing else but the Poincaré Conjecture – in fact, Poincaré did not stated it as a conjecture, he just mentioned that “it would be interesting to know the answer to the following question”. It is not particularly important by itself. It claims that one difficult to verify property (being homeomorphic to a 3-sphere) is equivalent to another difficult to verify property (having trivial fundamental group). In practice, if you know that the fundamental group is trivial, you know also that your manifold is a 3-sphere.

Next post: New ideas.

Monday, July 29, 2013

Guessing who will get Fields medals - Some history and 2014

Previous post: 2014 Fields medalists?

This was a relatively easy task during about three decades. But it is nearly impossible now, at least if you do not belong to the “inner circle” of the current President of the International Mathematical Union. But they change at each Congress, and one can hardly hope to belong to the inner circle of all of them.

I would like to try to explain my approach to judging a particular selection of Fields medalists and to fairly efficiently guessing the winners in the past. This cannot be done without going a little bit into the history of Fields medals as it appears to a mathematician and not to a historian working with archives. I have no idea how to get to the relevant archives and even if they exist. I suspect that there is no written record of the deliberations of any Fields medal committee.

The first two Fields medals were awarded in 1936 to Lars Ahlfors and Jesse Douglas. It was the first award, and it wasn’t a big deal. It looks like that the man behind this choice was Constantin Carathéodory. I think that this was a very good choice. In my personal opinion, Lars Ahlfors is the best analyst of the previous century, and he did his most important work after the award, which is important in view of the terms of the Fields’ will. Actually, his best work was done after WWII. If not the war, it would be done earlier, but still after the award. J. Douglas solved the main problem about minimal surfaces (in the usual 3-dimensional space) at the time. He did with the bare hands things that we do now using powerful frameworks developed later. I believe that he became seriously ill soon afterward, but today I failed to find online any confirmation of this. Now I remember that I was just told about his illness. Apparently, he did not produce any significant results later. Would he continue to work on minimal surfaces, he could be forced to develop at least some of later tools.

The next two Fields medals were awarded in 1950 and since 1950 from 2 to 4 medals were awarded every 4 years. Initially the International Mathematical Union (abbreviated as IMU) was able to fund only 2 medals (despite the fact that the monetary part is negligible), but already for several decades it has enough funds for 4 medals (the direct monetary value remains to be negligible). I was told that awarding only 2 medals in 2002 turned out to be possible only after a long battle between the Committee (or rather its Chair, S.P. Novikov) and the officials of the IMU. So, I am not alone in thinking that sometimes there are no good enough candidates for 4 medals.

I apply to the current candidates the standard of golden years of both mathematics and the Fields medals. For mathematics, they are approximately 1940-1980, with some predecessors earlier and some spill-overs later. For medals, they are 1936-1986 with some spill-overs later. The whole history of the Fields medals can traced in the Proceedings of Congresses. They are interesting in many other respects too. For example, they contain a lot of very good expository papers (and many more of bad ones). It is worthwhile at least to browse them. Now they are freely available online: ICM Proceedings 1893-2010.

The presentation of work of 1954 medalists J.-P. Serre and K. Kodaira by H. Weyl is a pleasure to read. H. Weyl unequivocally tells that their mathematics is new and went into a new territory and is based on methods unknown to most of mathematicians at the time (in fact, this is still true). He even included an introduction to these methods in the published version.

The 1990 award at the Kyoto Congress was a turning point. Ludwig D. Faddeev was the Chairman of the Fields Medal Committee and the President of the IMU for the preceding 4 years. 3 out of 4 medals went to scientists significant part of whose works was directly related to his or his students’ works. The influence went in both directions: for one winner the influence went mostly from L.D. Faddeev and his pupils, for two other winners their work turned out to be very suitable for a synthesis with some ideas of L.D. Faddeev and his pupils. All these works are related to the theoretical physics. Actually, after reading the recollections of L.D. Faddeev and prefaces to his books, it is completely clear that he is a theoretical physicists at heart, despite he has some interesting mathematical results and he is formally (judging by the positions he held, for example) considered to be a mathematician.

The 1990 was the only year when one of the medals went to a physicist. Naturally, he never proved a theorem. But his papers from 1980-1994 contain a lot of mathematical content, mostly conjectures motivated by quantum field theory reasoning. There is no doubt that his ideas are highly original from the point of view of a mathematician (and much less so from the point of view of someone using Feynman’s integrals daily), that they provided mathematicians with a lot of problems to think about, and indeed resulted in quite interesting developments in mathematics. But many mathematicians, including myself, believe that the Fields medals should be awarded to outstanding mathematicians, and a mathematician should prove his or her claims. I don’t know any award in mathematics which could be awarded for conjectures only.

In 1994 one of the medals went to the son of the President of the IMU at the time. Many people think that this is far beyond any ethical norms. The President could resign from his position the moment the name of his son surfaced. Moreover, he should decline the offer of this position in 1990. It is impossible to believe that that guy did not suspect that his son will be a viable candidate in 2-3 years (if his son indeed deserved the medal). The President of IMU is the person who is able, if he or she wants, to essentially determine the winners, because the selection of the members of the Fields medal Committee is essentially in his or her hands (unless there is a insurrection in the community – but this never happened).

As a result, the system was completely destroyed in just two cycles without any changes in bylaws or procedures (since the procedures are kept in a secret, I cannot be sure about the latter). Still, some really good mathematicians got a medal. Moreover, in 2002 it looked like the system recovered. Unfortunately already in 2006 things were the same as in the 1990ies. One of the awards was outrageous on ethical grounds (completely different from 1994); the long negotiations with Grisha Perelman remind plays by Eugène Ionesco.

In the current situation I would be able to predict the winners if I would knew the composition of the committee. Since this is impossible, I will pretend that the committee is as impartial as it was in 1950-1986. This is almost (but not completely) equivalent to telling my preferences.

I would be especially happy if an impartial committee will award only 2 medals and Manjul Bhargava and Jacob Lurie will be the winners. I hope that their advisors are not on the committee. Their works look very attractive to me. I suspect that Jacob Lurie is the only mathematician working now and comparable with the giants of the golden age. But I do not have enough time to study his papers, or, rather, his books. They are just too long for everybody except people working in the same field. Usually they are hundreds pages long; his only published book (which covers only preliminaries) is almost 1000 pages long. Papers by Manjul Bhargava seem to be more accessible (definitely, they are much shorter). But I am not an expert in his field and I would need to study a lot before jumping into his papers. I do not have enough motivation for this now. An impartial committee would be reinforce my high opinion about their work and provide an additional stimulus to study them deeper. The problem is that I have no reason to expect the committee to be impartial.

Arthur Avila is very strong, or so tell me my expert friends. His field is too narrow for my taste. The main problem is that his case is bound to be political. It depends on the balance of power between, approximately, Cambridge, MA – Berkley and Rio de Janeiro – Paris. Here I had intentionally distorted the geolocation data.

The high ratings in that poll of Manjul Bhargava and Artur Avila are the examples of the “name recognition” I mentioned. I think that an article about Manjul Bhargava appeared even in the New York Times. Being a strong mathematician from a so-called developing country (it seems that the term “non-declining” would be better for English-speaking countries), Artur Avila is known much better than American or British mathematicians of the same level.

Most of mathematicians included in the poll wouldn’t be ever considered by anybody as candidates during the golden age. There would be several dozens of the same level in the same broadly defined area of mathematical. Sections of the Congress can serve as the first approximation to a good notion of an area of mathematics. And a Fields medalist was supposed to be really outstanding. Restricting myself by the poll list I prefer one of the following variants: either Bhargava, or Lurie, or both or no medals for the lack of suitable candidates.



Next post: Did J. Lurie solved any big problem?

Sunday, July 28, 2013

2014 Fields medalists?

Previous post: New comments to the post "What is mathematics?"

I was asked by Tamas Gabal about possible 2014 Fields medalists listed in an online poll. I am neither ready to systematically write down my thoughts about the prizes in general and Fields medals in particular, nor to predict who will get 2014 medals. I am sure that the world would be better without any prizes, especially without Fields medals. Also, in my opinion, no more than two persons deserve 2014 Fields medals. Instead of trying to argue these points, I will quote my reply to Tamas Gabal (slightly edited).

Would I know who the members of the Fields medal committee are, I would be able to predict medalists with 99% confidence. But the composition of the committee is a secret. In the past, the situation was rather different. The composition of the committee wasn't important. When I was just a second year graduate student, I compiled a list of 10 candidates, among whom I considered 5 to have significantly higher chances (I never wrote down this partition, and the original list is lost for all practical purposes). All 4 winners were on the list. I was especially proud of predicting one of them; he was a fairly nontraditional at the time (or so I thought). I cannot do anything like this now without knowing the composition of the committee. Recent choices appear to be more or less random, with some obvious exceptions (like Grisha Perelman).

Somewhat later I wrote:

In the meantime I looked at the current results of that poll. Look like the preferences of the public are determined by the same mechanism as the preferences for movie actors and actresses: the name recognition.

Tamas Gabal replied:

Sowa, when you were a graduate student and made that list of possible winners, did you not rely on name recognition at least partially? Were you familiar with their work? That would be pretty impressive for a graduate student, since T. Gowers basically admitted that he was not really familiar with the work of Fields medalists in 2010, while he was a member of the committee. I wonder if anyone can honestly compare the depth of the work of all these candidates? The committee will seek an opinion of senior people in each area (again, based on name recognition, positions, etc.) and will be influenced by whoever makes the best case... It's not an easy job for sure.

Here is my reply.

Good question. In order to put a name on a list, one has to know this name, i.e. recognize it. But I knew much more than 10 names. Actually, this is one of the topics I wanted to write about sometime in details. The whole atmosphere at that time was completely different from what I see around now. May be the place also played some role, but I doubt that its role was decisive. Most of the people around me liked to talk about mathematics, and not only about what they were doing. When some guy in Japan claimed that he proved the Riemann hypothesis, I knew about this the same week. Note that the internet was still in the future, as were e-mails. I had a feeling that I know about everything important going on in mathematics. I always had a little bit more curiosity than others, so I knew also about fields fairly remote from own work.

I do not remember all 10 names on my list (I remember about 7), but 4 winners were included. It was quite easy to guess 3 of them. Everybody would agree that they were the main contenders. I am really proud about guessing the 4th one. Nobody around was talking about him or even mentioned him, and his field is quite far from my own interests. To what extent I understood their work? I studied some work of one winner, knew the statements and had some idea about their proof for another one (later the work of both of them influenced a lot my own work, but mostly indirectly), and very well knew what are the achievements of the third one, why they are important, etc. I knew more or less just the statements of two main results of the 4th one, the one who was difficult to guess – for me. I was able to explain why this or that guy got the medal even to a theoretical physicist (actually did on one occasion). But I wasn’t able to teach a topic course about works of any of the 4.

At the time I never heard any complaints that a medal went to a wrong person. The same about all older awards. There was always a consensus in the mathematical community than all the people who got the medal deserved it. May be somebody else also deserved it too, but there are only 3 or 4 of them each time.

Mathematics is a human activity. This is one of the facts that T. Gowers prefers to ignore. Nobody verifies proofs line by line. Initially, you trust your guts feelings. If you need to use a theorem, you will be forced to study the proof and understand its main ideas. The same is true about the deepness of a result. You do not need to know all the proofs in order to write down a list like my list of 10 most likely winners (next time my list consisted of no more than 5 or 6, all winner were included). It seems that I knew the work of all guessed winners better than Gowers knew the work of 2010 medalists. But even if not, there is a huge difference between a graduate student trying to guess the current year winners, and a Fellow of the London Royal Society, a Fields medalist himself, who is deciding who will get 2010 medals. He should know more.

The job is surely not an easy one now, when it is all about politics. Otherwise it would be very pleasant.

Next post: Guessing who will get Fields medals - Some history and 2014.

Wednesday, March 27, 2013

The value of insights and the identity of the author

Previous post: Hard, soft, and Bott periodicity - Reply to T. Gowers.

This is partially a reply to a comment by Emmanuel Kowalski.

There is a phenomenon which I can hardly explain. For example, E. Kowalski said in the linked comment that he cannot comment on my statements (it seems that he is not addressing me at all, he is just commenting) without making assumptions about me, i.e. without using ad hominem arguments. Why he cannot write about my ideas without knowing my personal details?

It seems that E. Kowalski suspects that my opinions are somehow deducible from my personal life circumstances, my biography, etc.

In fact, it is possible that I have more experience due to my biography than most of other mathematicians. This is even partially the case, but only partially, and this does not affect my opinions about mathematical theories. These aspects of my life experience are quite obvious already in the discussion in the Gowers's blog.

But my opponents do not seem to adhere to this theory, which is obviously favoring me. Rather, it seems that they believe I am not knowledgeable enough or plain stupid. Would this be the case, my conclusions would be, most likely, wrong and, moreover, it would be quite easy to refute them without making any assumptions about me.

In fact, one of the main reasons for my semi-anonymity is that I would like to see my arguments and opinions evaluated on their intrinsic merits, without knowing if am I married or not, how good or bad is my employer - name anything you would like to know.

This phenomenon is not limited to my opponents. Somebody, apparently sympathetic to me, wrote: I’d be very interested in any small mathematical insight you might be willing to share, if you’re whom I conjecture you are". So, even my mathematical insights are interesting or not depending on who I am. For me, the interest of a mathematical (or “meta-mathematical”, like this discussion) insight does not depend on whom it belongs.

Of course, sometimes the authorship matters. But assumptions about the author still do not. Let us imagine that it is 1976 today (many other years will work also). Then any person interested in algebra, algebraic topology, or Grothendieck algebraic geometry knows that all papers by D. Quillen to date are very interesting and often contain incredibly deep insights. It is only natural to be interested in any new paper by Quillen. I don’t know anybody working now and comparable in this respect to 1976 Quillen; this is the reason for an exercise in time travel.

At the same time, if I see an interesting result, theory, insight, it does not matter for me if it is published in Annals or in Amer. Math. Monthly, who is the author, and what problems in life she or he has, if any.

In both situations the insights of a person lead to her or his reputation. The reputation itself does not make all insights of this person interesting. Only in rare cases the reputation may suggest that it is worthwhile to pay attention to works of a person.

Unfortunately, this seems to be not true nowadays at least in the West. The relatively recent cult of Fields medals makes the work and the area of any new winner instantly interesting. In the past the presenters of the awarded medals used to stress that there is at least 30-40 young mathematicians with comparable achievements. Not anymore. In the US, one will be monetarily rewarded for a trivial paper in Annals, but never for an expository paper (and no books, please, I was told many years ago), no matter how deep its insights. Papers in a European journal are treated by default as second rate papers. An insight of a person working in Ivy League is more valuable that a much deeper insight of a person working in Alabama. And so on.

Finally, I would like to make an offer to Emmanuel Kowalski (only to him).


Dear Emmanuel Kowalski,

You may ask me in comments here anything you would like to know. I do not promise to answer all the questions. I will evaluate to what extent my answers will help to sort out my real life identity, and will not answer to the questions which are really helpful in this respect. In particular, I will not tell what my area of research is. I will not answer to the questions which I will deem to be too personal. But if finding out my identity is not your goal, here is your chance to replace your assumptions by the actual knowledge.

Next post: Combinatorics is not a new way of looking at mathematics.

Tuesday, January 1, 2013

Reply to a comment

Previous post: Freedom of speech in mathematics

This is a reply to a recent comment by an Anonymous.

Dear Anonymous,

Thank you very much for reading these notes and for writing a serious and stimulating comment. I was thinking about it for a few days, and I am still not sure that my reply will be convincing. But let me try.

The initial goal of this blog was to provide a context for my arguments in Gowers's blog and in another blog. The latter was quoted by another anonymous in Gowers’s blog, and I had no other choice as to try to explain them (the original comment was addressed to people who know me and my views fairly well). So, the concentration on Gowers's views and activities was only natural; this was the intention. Now this topic is more or less exhausted, and expanding the scope of the blog, or even changing it completely may be in order.

Gowers himself described his goals and said that achieving them will eliminate mathematics as we know it. There is nothing apocalyptic in my discussion of his ideas. I do not anticipate that he or his followers will achieve his goals. I do not think that humans are some sort of computers, and I do not think that computers can do real mathematics (definitely, they can do a lot of mathematical things better than humans, but only when a class of problems was completely understood by humans). But he may achieve his goal in an Orwellian way by changing the meaning of the word “mathematics”. He already shifted the preferences of a big part of mathematical community. It took about ten years. If he will be able to do a comparable feat in the next ten years, and then, may be with his followers, once more, “mathematics” will mean “Hungarian-style combinatorics”. And I do believe that the Hungarian-style combinatorics is a field where computers eventually will be superior to humans because a nearly exhaustive search for a proof will be more efficient than human insights (like it happened with chess, which is actually a branch of combinatorics).

Independently of this scenario, I believe that having a person intended to eliminate mathematics (even if his goal is not achievable) in position of such influence as Gowers is extremely unhealthy and dangerous.

I agree that an “open and critical analysis of very influential individuals or groups in the mathematics research community” is highly desirable. But I am not quite comfortable with the way you wrote about this: “what the discussion should be about”. First of all, I am not comfortable with writing this either, but this is my blog and I write about whatever I like and whenever I like. Perhaps, you meant to apply “should” not to me, but to the mathematical community itself. I will assume that this is what you meant.

I believe that such a discussion is hardly possible. As a rule, mathematicians strongly dislike to openly discuss any contentious issues. One may see this everywhere: from insignificant issues on a department of mathematics to major decision made by the AMS or Fields Medals Committee, for example. I would suggest these posts for publication in the Notices of the AMS (under my real name) if I would believe that there is some chance for them to be published.

To Editors of the Notices of the AMS: this is a challenge. Prove that I am wrong!

Anyhow, I am willing to participate in such an open discussion. There is no venue for this now. Still, I would be glad to expand this blog into such a venue. For example, it may be easily transformed into a collective blog, and, for example, you will be able to post here. You will need only a Google account for this, and I will need to know the name of the account and some way of verification that it belongs to the Anonymous who wrote the comment. I reserve the right to be the owner of the blog and its moderator (right now it is not moderated, comments appear without my approval). And, may be, I will eventually transfer it to somebody else.

Finally, I disagree that mathematics was “long dominated by geometry, topology, arithmetic geometry, etc.” By some reason the word “geometry” is very popular for a few decades, and topology is usually considered to be a branch of geometry. So, the word “geometry” was appended to almost any good mathematical theory. Say, Non-Commutative Geometry is actually a branch of functional analysis. Arithmetic Geometry is a branch of algebraic number theory. Topology is not a branch of geometry in the classical sense of the word “geometry”. Algebraic Topology is a branch of algebra. Well, I realize that this is a sort of scandalous statement. It took me many years to come to this conclusion. There was a subfield of topology called Geometric Topology (it is hardly alive by now); this would be a nonsense would topology be indeed a branch of geometry.

So, in my opinion mathematics was long dominated by good mathematics, but this is not the case anymore.


Next post: Happy New Year!

Wednesday, May 23, 2012

The Politics of Timothy Gowers. 2

Previous post: The Politics of Timothy Gowers. 1.


Since about 2000, T. Gowers became a prominent advocate of two ideas. First, he works on changing the mathematical public opinion about relative merits of various mathematical results and branches of mathematics in favor of his own area of expertise. Second, he advocates the elimination of mathematics as a significant human activity, and a gradual replacement of mathematicians by computers and moderately skilled professionals assisting these computers. The second goal is more remote in time; he estimates that it is at least decades or even a century away. The first goal is already partially accomplished. I believe that his work toward these two goals perfectly fits the definitions 3a, 5a, and 5b from Merriam-Webster.

I would like to point out that public opinion about various branches of mathematics changes continuously and in a manner internal to the mathematics itself. An area of mathematics may be (or may seem to be) completely exhausted; whatever is important in it, is relegated to textbooks, and a research in it wouldn’t be very valued. Somebody may prove a startling result by an unexpected new method; until the power of this method is exhausted, using it will be a very fashionable and valuable direction of research. This is just two examples.

In contrast with this, T. Gowers relies on ideological arguments, and, as one may guess, on his personal influence (note that most of the mathematical politics is done behind the closed doors and leaves no records whatsoever). In 2000, T. Gowers published two essays: “Two cultures in mathematics” in a highly popular collection of articles “Mathematics: Frontiers and Perspectives” (AMS, 2000), and “Rough structures and classification” in a special issue “GAFA Vision” of purely research journal “Geometric and functional analysis”.

The first essay, brilliantly written, put forward a startling thesis of the existence of two different cultures in mathematics, which I will call the mainstream and the Hungarian cultures for short. Most mathematicians are of the opinion that (pure) mathematics is a highly unified subject without any significant division in “cultures”. The mainstream culture is nothing else as the most successful part of mathematics in the century immediately preceding the publication of the “Two cultures” essay. It encompasses almost all interesting mathematics of the modern times. The Hungarian culture is a very specific and fairly elementary (this does not mean easy) sort of mathematics, having its roots in the work of Paul Erdös.

The innocently titled “GAFA Visions” essay has as it central and most accessible part a section called “Will Mathematics Exist in 2099?” It outlines a scenario eventually leading to a replacement mathematicians by computers. The section ends by the following prediction, already quoted in this blog.

"In the end, the work of the mathematician would be simply to learn how to use theorem-proving machines effectively and to find interesting applications for them. This would be a valuable skill, but would hardly be pure mathematics as we know it today.”
All arguments used to support the feasibility of this scenario are borrowed from the Hungarian culture. On the one hand, this is quite natural, because this is the area of expertise of Gowers. But then the conclusion should be “The work in the Hungarian culture would be simply to learn how to use Hungarian-theorems proving machines effectively”. This would eliminate the Hungarian culture, if it indeed exists, from mathematics, but will not eliminate pure mathematics.

This second project does not seem to be very realistic unless the mathematical community will radically change its preferences from favoring the mainstream mathematics to favoring the Hungarian one. And indeed, it seems that Gowers working simultaneously on both projects. He advocates Hungarian mathematics in his numerous lectures all over the world. He suddenly appears as the main lecturer on such occasions as the announcement of the Clay Institute million dollars prizes. It was a shock when he gave the main lecture about Milnor’s work at the occasion of the award of Abel prize to Milnor. Normally, such lectures are given by an expert in an area close to the area of the person honored. Gowers is in no way an expert in any of the numerous areas Milnor worked in. Moreover, he hardly had any understanding of the most famous results of Milnor; in fact, he consulted online (in a slightly veiled form at Mathoverflow.org) about some key aspects of this result. This public appearance is highly valuable for elevating the status of the Hungarian mathematics: a prominent representative of the last presents to the public some of the highest achievements of the mainstream mathematics.

The next year Gowers played the same role at the Abel prize award ceremony again. This time he spoke about his area of expertise: the award was given to a representative of Hungarian mathematics, namely, to E. Szemerédi. Be a presenter of a laureate work two year in a row is also highly unusual (I am not aware about any other similar case in mathematics) and is hardly possible without behind the closed doors politics. The very fact of awarding Abel prize to E. Szemerédi could be only the result of complicated political maneuvers. E. Szemerédi is a good and interesting mathematician, but not an extraordinary one. There are literally hundreds of better mathematicians. The award of the Abel prize to him is not an indicator of how good mathematician he is; it informs the mathematical community that the system of values of the mathematical establishment has changed.

How it could happen without politics that Gowers was speaking about the work of Milnor at the last year Abel prize ceremony? Gowers speaking about the work of Szemerédi is quite natural, but Gowers speaking about the work of Milnor (and preparing this presentation with the help of Mathoverflow) is quite bizarre. It is obvious that Gowers is the most qualified person in the world to speak about the works of Szemeredi, but there are thousands of mathematicians more qualified to speak about Milnor’s work.


Next post: The Politics of Timothy Gowers. 3.

Saturday, April 14, 2012

The times of André Weil and the times of Timothy Gowers. 3

Previous post: The times of André Weil and the times of Timothy Gowers. 2.


Now we can hardly say that mathematics is a useless science in the sense of G.H. Hardy. It contributes to the exploitation in various ways. For example, the theory of stochastic differential equations, a highly sophisticated branch of mathematics, is essential for the financial manipulations leading to a redistribution of wealth from the middle class to the top 1% of the population. The encryption schemes, designed by mathematicians and implemented by software engineers, prevent access of the general public to all sorts of artistic and intellectual goods. This is a new phenomenon, a result of the development of the Internet.

There is no need to detail the enormous contribution of mathematics to the business of extermination; it is obvious now (this wasn’t known to the general public when A. Weil wrote his article).

Mathematicians are not as free now as they were at the times of André Weil. There are (almost?) no more non-mathematical jobs which will earn a decent livehood and will leave enough energy for mathematical research. This situation is aggravated by the fact that if someone is not employed by a sufficiently rich university, then he or she has no access to the current mathematical literature, which is mostly electronic now, and, if sold to individuals, then the prices are set to be prohibitive. The access to these electronic materials (which cost almost nothing to the publishers to produce) is protected by the above mentioned encryption tools. The industry of the scientific publishing does not have publishing as its main activity any more. Its main business now is the restricting access to scientific papers by a combination of encryption, software, and lobbying for favorable to this industry laws. The main goal pursued is the transfer of the taxpayers dollars to the pockets of its executives and shareholders (this topics deserves a separate detailed discussion).

There are no Nobel prizes in mathematics, but there are many others. The Norwegian Abel prize is specifically intended to be a “Nobel prize” in mathematics. Long before it was established (the first one was awarded in 2003), another prize, the Fields medal, achieved incredible prestige and influence in mathematics, despite the negligible monetary award associated with it. In contrast with the Nobel and Abel prizes, the Fields medal may be awarded only to “young” mathematicians. The meaning of the word “young” was initially not specified, but the mathematical establishment slowly arrived at a precise definition. Somebody is young for the purposes of awarding a Fields medal, if he did not achieved the age 41 in the year of the International Congress of Mathematicians, at which the medal is to be awarded. The Congresses are hold every 4 years (only World War II caused an interruption). So, the persons born in the year of a Congress have additional 4 year to work and to have their work recognized.

Even if this stupid rule would be discarded, the age limitation tends to reward fast people strong at applying existing methods to famous problems. The Fields medals (and many other prizes in mathematics) are usually awarded to the mathematician who made the last step in a solution of a problem, and only rarely to the one who discovered a new method or new line of thought. There are only little chances for “slow maturing work” to be rewarded by this most prestigious award (more prestigious by an order of magnitude than any other prize, except, may be, the Abel prize, which is up to now was awarded almost exclusively to the people of the retirement age).

It was possible to ignore all the prizes in 1948. The Fields medals were awarded only once, in 1936, to two mathematicians. Other prizes, where they existed, did not carry any serious prestige. But in 1950, 1954, and 1958 Fields medals went to exceptionally brilliant mathematicians, and since then this was a prize coveted by anybody who thought that there is a chance to get it.

Now there are many other prizes, each one striving to carry as much weight and influence as possible. An interesting example is the story of the Salem prize. The Salem prize was established by the widow of Raphaël Salem in order to encourage work in Salem's field of interest, primarily the theory of Fourier series. Note that Fourier series and their versions are used throughout almost whole mathematics; it is only natural to think that the prize was intended to mathematicians working on problems really close to Salem’s interests. The international committee (occasionally changing by an unknown to the public mechanism) gradually increased the scope of the prize. By 1991 no connection with Salem’s interests could be observed. Now it is the most prestigious prize for young analysts without any restrictions (and the analysis is understood in a very broad sense).

In fact, this change (as also a suspected preference for mathematicians belonging to one or two particular schools) was not welcomed by Salem’s family, and it withdraw the funding for the prize. The committee did not inform the mathematical public about these events and continued to award the prize with $0.00 attached. I am not aware of the current situation; may be the committee managed to raise some money. (Please, note that I cannot name my sources, as it is often the case in the news reporting, and hence cannot provide any proof. I can only vouch that my sources are reliable and well informed.)

The negligible monetary value of most mathematical prizes is not of any importance. The prestige is immediately transformed into the salary rises, offers from rich universities capable of doubling the salary, etc. The lifetime income could be increased by a much bigger amount than the monetary value of a Nobel Prize.

These are the signs of the lost innocence directly related to the article of André Weil. There are many other signs, and one can talk about them indefinitely. In any case, there are no more ivory towers for mathematicians; their jobs depend on many complicated and not always natural implicit agreements in the society, various laws and regulations detailing the laws, etc. From 1945 till about 1985 all these agreements and laws worked very favorably for mathematics. But, as it turned out, the same laws and understandings could be easily used to control mathematicians, sometimes directly, sometimes in hardly discernible ways, and the same arguments that were used to increase the number of jobs 60 or 50 years ago, could, in principle, be used to eliminate these jobs completely.


Next post: My affair with Szemerédi-Gowers mathematics.