About the title

About the title

I changed the title of the blog on March 20, 2013 (it used to have the title “Notes of an owl”). This was my immediate reaction to the news the T. Gowers was presenting to the public the works of P. Deligne on the occasion of the award of the Abel prize to Deligne in 2013 (by his own admission, T. Gowers is not qualified to do this).

The issue at hand is not just the lack of qualification; the real issue is that the award to P. Deligne is, unfortunately, the best compensation to the mathematical community for the 2012 award of Abel prize to Szemerédi. I predicted Deligne before the announcement on these grounds alone. I would prefer if the prize to P. Deligne would be awarded out of pure appreciation of his work.



I believe that mathematicians urgently need to stop the growth of Gowers's influence, and, first of all, his initiatives in mathematical publishing. I wrote extensively about the first one; now there is another: to take over the arXiv overlay electronic journals. The same arguments apply.



Now it looks like this title is very good, contrary to my initial opinion. And there is no way back.
Showing posts with label working in mathematics. Show all posts
Showing posts with label working in mathematics. Show all posts

Wednesday, August 21, 2013

About some ways to work in mathematics

Previous post: New ideas.


From a comment by Tamas Gabal:

“...you mentioned that the problems are often solved by methods developed for completely different purposes. This can be interpreted in two different ways. First - if you work on some problem, you should constantly look for ideas that may seem unrelated to apply to your problem. Second - focus entirely on the development of your ideas and look for problems that may seem unrelated to apply your ideas. I personally lean toward the latter, but your advice may be different.”

Both ways to work are possible. There are also other ways: for example, not to have any specific problem to solve. One should not suggest one way or another as the right one. You should work in the way which suits you more. Otherwise you are unlikely to succeed and you will miss most of the joy.

Actually, my statement did not suggest either of these approaches. Sometimes a problem is solved by discovering a connection between previously unrelated fields, and sometimes a problem is solved entirely within the context in was posed originally. You never know. And how one constantly looks for outside ideas? A useful idea may be hidden deep inside of some theory and invisible otherwise. Nobody studies the whole mathematics in the hope that this will help to solve a specific problem.

I think that it would be better not to think in terms of this alternative at all. You have a problem to solve, you work on it in all ways you can (most of approaches will fail – this is the unpleasant part of the profession), and that’s it. The advice would be to follow development in a sufficiently big chunk of mathematics. Do not limit yourself by, say, algebra (if your field is algebra). The division of mathematics into geometry, algebra, and analysis is quite outdated. Then you may suddenly learn about some idea which will help you.

Also, you do not need to have a problem to begin with. Usually a mathematician starts with a precisely stated problem, suggested by the Ph.D. advisor. But even this is not necessary.

My own way to work is very close to the way M. Atiyah described as his way of work in an interview published in “The Mathematical Intelligencer” in early 1980ies (of course, I do not claim that the achievements are comparable). This interview is highly recommended; it is also highly recommended by T. Gowers. I believe that I explained how I work to a friend (who asked a question similar to yours one) before I read this interview. Anyhow, I described my way to him as follows. I do not work on any specific problem, except of my own working conjectures. I am swimming in mathematics like in a sea or river and look around for interesting things (the river of mathematics carries much more stuff than a real river). Technically this means that I follow various sources informing about the current developments, including talks, I read papers, both current and old ones, and I learn some stuff from textbooks. An advanced graduate level textbook not in my area is my favorite type of books in mathematics. I am doing this because this is that I like to do, not because I want to solve a problem or need to publish 12 papers during next 3 years. From time to time I see something to which, I feel, I can contribute. From time to time I see some connections which were not noticed before.

My work in “my area” started in the following way. I was familiar with a very new theory, which I learned from the only available (till about 2-3 years ago!) source: a French seminar devoted to its exposition. The author never wrote down any details. Then a famous mathematician visited us and gave a talk about a new (not published yet) remarkable theorem of another mathematician (it seems to me that it is good when people speak not only about their own work). The proof used at a key point an outside “Theorem A” by still another mathematicians. The speaker outlined its proof in few phrases (most speakers would just quote Theorem A, so I was really lucky). Very soon I realized (may be the same day or even during the talk) that the above new theory allows at least partially transplant Theorem A in a completely different context following the outline from the talk. But there is a problem: the conclusion of Theorem A tells that you are either in a very nice generic situation, or in an exceptional situation. In my context there are obvious exceptions, but I had no idea if there are non-obvious exceptions, and how to approach any exceptions. So, I did not even started to work on any details. 2-3 years later a preprint arrived in the mail. It was sent to me by reasons not related at all with the above story; actually, I did not tell anybody about these ideas. The preprint contained exactly what I needed: a proof that there are only obvious exceptional cases (not mentioning Theorem A). Within a month I had a proof of an analogue of Theorem A (this proof was quickly replaced by a better one and I am not able to reproduce it). Naturally, I started to look around: what else can be done in my context. As it turned out, a lot. And the theory I learned from that French seminar is not needed for many interesting things.

Could all this be planned in advance following some advice of some experienced person? Certainly, not. But if you do like this style, my advice would be: work this way. You will be not able to predict when you will discover something interesting, but you will discover. If this style does not appeal to you, do not try.

Note that this style is opposite to the Gowers’s one. He starts with a problem. His belief that mathematics can be done by computers is based on a not quite explicit assumption that his is the only way, and he keeps a place for humans in his not-very-science-fiction at least at the beginning: humans are needed as the source of problems for computers. I don’t see any motivation for humans to supply computers with mathematical problems, but, apparently, Gowers does. More importantly, a part of mathematics which admits solutions of its problems by computers will very soon die out. Since the proofs will be produced and verified by computers, humans will have no source of inspiration (which is the proofs).


Next post: Is algebraic geometry applied or pure mathematics?