About the title

About the title

I changed the title of the blog on March 20, 2013 (it used to have the title “Notes of an owl”). This was my immediate reaction to the news the T. Gowers was presenting to the public the works of P. Deligne on the occasion of the award of the Abel prize to Deligne in 2013 (by his own admission, T. Gowers is not qualified to do this).

The issue at hand is not just the lack of qualification; the real issue is that the award to P. Deligne is, unfortunately, the best compensation to the mathematical community for the 2012 award of Abel prize to Szemerédi. I predicted Deligne before the announcement on these grounds alone. I would prefer if the prize to P. Deligne would be awarded out of pure appreciation of his work.



I believe that mathematicians urgently need to stop the growth of Gowers's influence, and, first of all, his initiatives in mathematical publishing. I wrote extensively about the first one; now there is another: to take over the arXiv overlay electronic journals. The same arguments apply.



Now it looks like this title is very good, contrary to my initial opinion. And there is no way back.
Showing posts with label Endre Szemerédi. Show all posts
Showing posts with label Endre Szemerédi. Show all posts

Sunday, March 24, 2013

Reply to Timothy Gowers

Previous post: Happy New Year!


Here is a reply to a comment by T. Gowers about my post My affair with Szemerédi-Gowers mathematics.

I agree that we have no way to know what will happen with combinatorics or any other branch of mathematics. From my point of view, your “intermediate possibility” (namely, developing some artificial way of conceptualization) does not qualify as a way to make it “conceptual” (actually, a proper conceptualization cannot be artificial essentially by the definition) and is not an attractive perspective at all. By the way, the use of algebraic geometry as a reference point in this discussion is purely accidental. A lot of other branches of mathematics are conceptual, and in every branch there are more conceptual and less conceptual subbranches. As is well known, even Deligne’s completion of proof of Weil’s conjectures was not conceptual enough for Grothendick.

Let me clarify how I understand the term “conceptual”. A theory is conceptual if most of the difficulties were moved from proofs to definitions (i.e. to concepts), or they are there from the very beginning (which may happen only inside of an already conceptual theory). The definitions may be difficult to digest at the first encounter, but the proofs are straightforward. A very good and elementary example is provided by the modern form of the Stokes theorem. In 19th century we had the fundamental theorem of calculus and 3 theorems, respectively due to Gauss-Ostrogradsky, Green, and Stokes, dealing with more complicated integrals. Now we have only one theorem, usually called Stokes theorem, valid for all dimensions. After all definitions are put in place, its proof is trivial. M. Spivak nicely explains this in the preface to his classics, “Calculus on manifolds”. (I would like to note in parentheses that if the algebraic concepts are chosen more carefully than in his book, then the whole theory would be noticeably simpler and the definitions would be easier to digest. Unfortunately, such approaches did not found their way into the textbooks yet.) So, in this case the conceptualization leads to trivial proofs and much more general results. Moreover, its opens the way to further developments: the de Rham cohomology turns into the most natural next thing to study.

I think that for every branch of mathematics and every theory such a conceptualization eventually turns into a necessity: without it the subject grows into a huge body of interrelated and cross-referenced results and eventually falls apart into many to a big extent isolated problems. I even suspect that your desire to have a sort of at least semi-intelligent version of MathSciNet (if I remember correctly, you wrote about this in your GAFA 2000 paper) was largely motivated by the difficulty to work in such a field.

This naturally leads us to one more scenario (the 3rd one, if we lump together your “intermediate” scenario with the failure to develop a conceptual framework) for a not conceptualized theory: it will die slowly. This happens from time to time: a lot of branches of analysis which flourished at the beginning of 20th century are forgotten by now. There is even a recent example involving a quintessentially conceptual part of mathematics and the first Abel prize winner, J.-P. Serre. As H. Weyl stressed in his address to 1954 Congress, the Fields medal was awarded to Serre for his spectacular work (his thesis) on spectral sequences and their applications to the homotopy groups, especially to the homotopy groups of spheres (the problem of computing these groups was at the center of attention of leading topologists for about 15 years without any serious successes). Serre did not push his method to its limits; he already started to move to first complex manifolds, then algebraic geometry, and eventually to the algebraic number theory. Others did, and this quickly resulted in a highly chaotic collection of computations with the Leray-Serre spectral sequences plus some elementary consideration. Assuming the main properties of these spectral sequences (which can be used without any real understanding of spectral sequences), the theory lacked any conceptual framework. Serre lost interest even in the results, not just in proofs. This theory is long dead. The surviving part is based on further conceptual developments: the Adams spectral sequence, then the Adams-Novikov spectral sequence. This line of development is alive and well till now.

Another example of a dead theory is the Euclid geometry.

In view of all this, it seems that there are only the following options for a mathematical theory or a branch of mathematics: to continuously develop proper conceptualizations or to die and have its results relegated to the books for gifted students (undergraduate students in the modern US, high school students in some other places and times).


Next post: Reply to JSE.

Monday, June 4, 2012

T. Gowers about replacing mathematicians by computers. 2

Previous post: T. Gowers about replacing mathematicians by computers. 1.


As we do know too well by now, not all scientific or technological progress is unqualifiedly beneficial for the humanity. As one of the results of scientific research the humanity now has the ability to exterminate not only all humans, but also all the life on Earth. Dealing with this problem determined to a big extent the direction of development of western countries since shortly after WWII. There are not so dramatic examples also; a scientific research about humans may damage only minor part of the population, or even just the subjects of this research (during the last decades, such a research is carefully monitored in order to avoid any harm to the subjects).

Gowers’s project is an experiment on humans. I believe that replacing mathematicians by computers will do a lot of harm at least to the people who could find their joy and the meaning of life in doing mathematics. But the results, if the project succeeds, are not predictable. If we agree, together with André Weil, that mathematics is an indispensable part of our culture, then it hardly possible to predict what will happen without it.


There is also question if Gowers’s goal is achievable at all. He limited it in at least two significant respects. First, he would be satisfied even if computer will not surpass humans (as opposed to the designers of “Deep Blue”, who wanted and managed to surpass the best chess players). Second, he always speaks about proving theorems, and never about discovering analogies, introducing new definitions, etc. These aspects are the most important part of mathematics, not the theorems (compare the already quoted maxim by Manin). But only theorems matter in the Hungarian-style mathematics. Perhaps, this is the reason why Gowers never mentions these aspects of mathematics. It is hard to tell if this limited goal can be achieved. Given a statement, a computer definitely able sometimes to find a proof of it (or disprove it) by a sufficiently exhaustive search. If it is not able to give an answer, the problem remains open, exactly as in human mathematics. What kind of statements a computer will be able to deal with, is another question.

Some of the best problems are not a true-false type of questions. For example, the problem of defining a “good” cohomology theory for algebraic varieties over finite fields (to a big extent solved by Grothendieck), or the problem of defining higher algebraic K-functors (solved by Quillen). It is impossible for me to imagine a computer capable to invent new definitions or suggest problems based on vague analogies like these two problems, responsible for perhaps a half of really good mathematics after 1950.


It seems that I could feel safe: even in the gloomy Gowers’s future, there will be place for human mathematicians. In fact, the future theorems, stated as conjectures, always served as one of the main, or simply the main stimulus to invention of new definitions. In addition, the success of Gowers’s project will mean the end of mathematics as a profession. There will be no new mathematicians, of Serre’s level, or any other, simply because there will be no way to earn a living by doing human mathematics.

Next post: The twist ending. 1

T. Gowers about replacing mathematicians by computers. 1

Previous post: The Politics of Timothy Gowers. 3.


Starting with his “GAFA Visions” essay, T. Gowers promotes the idea that it is possible and desirable to design computers capable of proving theorems at a very high level, although he will be satisfied if such computers still will be not able to perform at the level of the very best mathematician, for example, at the level of Serre or Milnor. I attempted to discuss this topic with him in the comments to his post about this year Abel prize.

I had no plans for such a discussion, and the topic wasn’t selected by me. I made a spontaneous comment in another blog, which was a reaction to a reaction to a post about E. Szemerédi being awarded this year Abel prize. But I stated my position with many details in Gowers’s blog. T. Gowers replied to only three of my comments, and only partially. It seems that for many people it is hard to believe that a mathematician of the stature of T. Gowers may be interested in eliminating mathematics as a human activity, and this is why my comments in that blog made their way to Gowers’s one (one can find links in the latter).

For Gowers, the goal of designing computers capable of replacing mathematicians is fascinating by itself. Adding some details to his motivation, he claims that such computers cannot be designed without deep understanding of how humans prove theorems. He will not consider his goal achieved if the theorem-proving computer will operate in the manner of “Deep Blue” chess-playing computer, namely, by a huge and a massively parallel (like “Deep Blue”) search. Without any explanation, even after directly asked about this, he claims that in fact a computer operating in the manner of “Deep Blue” cannot be successful in proving theorems. In his opinion, such a computer should closely imitate humans (whence we will learn something about humans by designing such a computer), and that it is much simpler to imitate humans doing mathematics than other tasks.

In addition, Gowers holds the opinion that elimination of mathematics would be not a big loss, comparing it to losing many old professions to the technology.


Gowers’s position contradicts to the all the experience of the humanity. None of successful technologies imitates the way the humans act. No means of transportation imitates walking or running, for example. On the other end and closer to mathematics, no computer playing chess imitates human chess players.

Note that parallel processing (on which “Deep Blue” had heavily relied) is exactly that Gowers attempts to do with mathematics in his Polymath project. It seems that this project approaches the problem from the other end: it is an attempt to make humans to act like computers. This will definitely simplify the goal of imitating them by computers. Will they be humans after this?


Gowers’s position is a position of a scientist interested in learning how something functions and not caring about the cost; in his case not caring about the very survival of mathematics. In my opinion, this means that he is not a mathematician anymore. Of course, he proves theorems, relies on his mathematical experience in his destructive project, but these facts are uninteresting trivialities. I expect from mathematician affection toward mathematics and a desire of its continuing flourishing. (How many nominal mathematicians such a requirement will disqualify?)


Next post: T. Gowers about replacing mathematicians by computers. 2.

Wednesday, May 23, 2012

The Politics of Timothy Gowers. 2

Previous post: The Politics of Timothy Gowers. 1.


Since about 2000, T. Gowers became a prominent advocate of two ideas. First, he works on changing the mathematical public opinion about relative merits of various mathematical results and branches of mathematics in favor of his own area of expertise. Second, he advocates the elimination of mathematics as a significant human activity, and a gradual replacement of mathematicians by computers and moderately skilled professionals assisting these computers. The second goal is more remote in time; he estimates that it is at least decades or even a century away. The first goal is already partially accomplished. I believe that his work toward these two goals perfectly fits the definitions 3a, 5a, and 5b from Merriam-Webster.

I would like to point out that public opinion about various branches of mathematics changes continuously and in a manner internal to the mathematics itself. An area of mathematics may be (or may seem to be) completely exhausted; whatever is important in it, is relegated to textbooks, and a research in it wouldn’t be very valued. Somebody may prove a startling result by an unexpected new method; until the power of this method is exhausted, using it will be a very fashionable and valuable direction of research. This is just two examples.

In contrast with this, T. Gowers relies on ideological arguments, and, as one may guess, on his personal influence (note that most of the mathematical politics is done behind the closed doors and leaves no records whatsoever). In 2000, T. Gowers published two essays: “Two cultures in mathematics” in a highly popular collection of articles “Mathematics: Frontiers and Perspectives” (AMS, 2000), and “Rough structures and classification” in a special issue “GAFA Vision” of purely research journal “Geometric and functional analysis”.

The first essay, brilliantly written, put forward a startling thesis of the existence of two different cultures in mathematics, which I will call the mainstream and the Hungarian cultures for short. Most mathematicians are of the opinion that (pure) mathematics is a highly unified subject without any significant division in “cultures”. The mainstream culture is nothing else as the most successful part of mathematics in the century immediately preceding the publication of the “Two cultures” essay. It encompasses almost all interesting mathematics of the modern times. The Hungarian culture is a very specific and fairly elementary (this does not mean easy) sort of mathematics, having its roots in the work of Paul Erdös.

The innocently titled “GAFA Visions” essay has as it central and most accessible part a section called “Will Mathematics Exist in 2099?” It outlines a scenario eventually leading to a replacement mathematicians by computers. The section ends by the following prediction, already quoted in this blog.

"In the end, the work of the mathematician would be simply to learn how to use theorem-proving machines effectively and to find interesting applications for them. This would be a valuable skill, but would hardly be pure mathematics as we know it today.”
All arguments used to support the feasibility of this scenario are borrowed from the Hungarian culture. On the one hand, this is quite natural, because this is the area of expertise of Gowers. But then the conclusion should be “The work in the Hungarian culture would be simply to learn how to use Hungarian-theorems proving machines effectively”. This would eliminate the Hungarian culture, if it indeed exists, from mathematics, but will not eliminate pure mathematics.

This second project does not seem to be very realistic unless the mathematical community will radically change its preferences from favoring the mainstream mathematics to favoring the Hungarian one. And indeed, it seems that Gowers working simultaneously on both projects. He advocates Hungarian mathematics in his numerous lectures all over the world. He suddenly appears as the main lecturer on such occasions as the announcement of the Clay Institute million dollars prizes. It was a shock when he gave the main lecture about Milnor’s work at the occasion of the award of Abel prize to Milnor. Normally, such lectures are given by an expert in an area close to the area of the person honored. Gowers is in no way an expert in any of the numerous areas Milnor worked in. Moreover, he hardly had any understanding of the most famous results of Milnor; in fact, he consulted online (in a slightly veiled form at Mathoverflow.org) about some key aspects of this result. This public appearance is highly valuable for elevating the status of the Hungarian mathematics: a prominent representative of the last presents to the public some of the highest achievements of the mainstream mathematics.

The next year Gowers played the same role at the Abel prize award ceremony again. This time he spoke about his area of expertise: the award was given to a representative of Hungarian mathematics, namely, to E. Szemerédi. Be a presenter of a laureate work two year in a row is also highly unusual (I am not aware about any other similar case in mathematics) and is hardly possible without behind the closed doors politics. The very fact of awarding Abel prize to E. Szemerédi could be only the result of complicated political maneuvers. E. Szemerédi is a good and interesting mathematician, but not an extraordinary one. There are literally hundreds of better mathematicians. The award of the Abel prize to him is not an indicator of how good mathematician he is; it informs the mathematical community that the system of values of the mathematical establishment has changed.

How it could happen without politics that Gowers was speaking about the work of Milnor at the last year Abel prize ceremony? Gowers speaking about the work of Szemerédi is quite natural, but Gowers speaking about the work of Milnor (and preparing this presentation with the help of Mathoverflow) is quite bizarre. It is obvious that Gowers is the most qualified person in the world to speak about the works of Szemeredi, but there are thousands of mathematicians more qualified to speak about Milnor’s work.


Next post: The Politics of Timothy Gowers. 3.

Sunday, May 20, 2012

My affair with Szemerédi-Gowers mathematics

Previous post: The times of André Weil and the times of Timothy Gowers. 3.


I learned about Szemerédi’s theorem in 1978 from the Séminaire Bourbaki talk by Jean-Paul Touvenot “La démonstration de Furstenberg du théorème de Szemerédi sur les progressions arithmétiques”. As it is clear already from the title, the talk was devoted to the work of Furstenberg and not to the work of Szemerédi.

The theorem itself looked amusing, being a generalization of a very well known theorem of van der Warden. The latter one was, probably, known to every former student of a mathematical school in USSR and was usually considered as a nice toy and a good way to show smart and mathematically inclined kids how tricky the use of the mathematical induction could be. Nobody considered it as a really important theorem or as a result comparable with the main work of van der Warden.

But the fact that such a statement can be proved by an application of the theory of dynamical systems was really surprising. It looks like Bourbaki devoted a talk to this subject exactly for the sake of this unusual at the time application and not for the sake of the theorem itself. According to a maxim attributed to Yu.I. Manin, proofs are more important than theorems, and definitions are more important than proofs. I wholeheartedly agree. In any case, the work of Szemerédi was not reported at the Séminaire Bourbaki. I also was impressed by this application of dynamical systems and later read several initial chapters of Furstenberg’s book. But when I told about this to a young very promising expert in my area of mathematics, I got very cold reception: “This is not interesting at all”. Even references to Bourbaki and to the dynamical systems did not help. Now I think that we were both right. The theorem was not interesting because it was (and, apparently, still is) useless for anything but to proving its variations, and it is not sufficiently charming by itself (I think that the weaker van der Warden’s theorem is more charming). The theorem is interesting because it can be proved by tools completely alien to its natural context.

Then I more or less forgot about it, with a short interruption when Furstenberg’s book appeared.

Many years later I learned about T. Gowers from a famous and very remarkable mathematician, whom I will simply call M, short for Mathematician. In 1995 he told me about work of Gowers on Banach spaces, stressing that a great work may be completely unnoticed by the mathematical community. According to M, Gowers solved all open problems about Banach spaces. I had some mixed feelings about this claim and M’s opinion. May be Gowers indeed solved all problems of the Banach spaces theory (it seems that he did not), but who cares? For outsiders the theory of Banach spaces is a dead theory deserving a chapter in Bourbaki’s treatise because its basic theorems (about 80 years old) are exceptionally useful. On the other hand, Gowers was a Congress speaker in 1994, and this means that his work did not went unnoticed. In 1998 Gowers was awarded one of the four Fields medals for that year, quite unexpectedly to every mathematician with whom I discussed 1998 awards (M is not among them). It was also surprising that in his talk on the occasion of the award Gowers spoke not about his work on Banach spaces, but about a new approach to Szemerédi’s theorem. The approach was, in fact, not quite new: it extended the ideas of an early paper by K.-F. Roth on this topic (the paper is a few years earlier than his proof of what is known now as the Tue-Siegel-Roth theorem).

I trusted enough to M’s opinion to conclude that, probably, all work by Gowers deserves attention. So, I paid some attention to his work about Szemerédi’s theorem, but his paper looked technically forbidding (especially given that my main interests always were more or less at the opposite pole of pure mathematics). Then Gowers published a brilliantly written essay “Two cultures in mathematics”. He argued that the mainstream mathematics, best represented by the work of Serre, Atiyah, Grothendieck and their followers (and may be even Witten, despite he is not really a mathematician) is no more than a half of mathematics, “the first culture”, as he called it. Usually it is called “the conceptual mathematics”, since the new concepts are much more important to it than solutions of particular problems (as was already mentioned, the definitions are more important than proofs and theorems). Gowers argued that there is an equally important “second culture”. Apparently, it is best represented by the so-called “Hungarian combinatorics” and the work of Erdös and his numerous collaborators. In this mathematics of “the second culture”, the problems are stressed, the elementary (not involving abstract concepts, but may be very difficult) proofs are preferred, and no rigid structures (like the structure of a simple Lie algebra) are visible. Moreover, Gowers argued that both cultures are similar in several important aspects, despite this is very far from being transparent. A crucial part of his essay is devoted to outlining these similarities. All this was written in an excellent language at the level of best classical fiction literature, and appeared to be very convincing.

I decided to at least attempt to learn something from this “second culture”. Very soon I have had some good opportunities. T. Gowers was giving a series of lectures about his work on Szemerédi’s theorem in a not very far university. I decided to drive there (a roundtrip for each lecture) and attend the lectures. The lectures turned out to be exceptionally good. Then, after I applied some minor pressure to one of my colleagues, he agreed to give a series of lectures about some tools used by Gowers in his work. His presentation was also exceptionally good. I also tried to read relevant chapters in some books. All this turned out to be even more attractive than I expected. I decided to teach a graduate course in combinatorics, and attempted to include some Gowers-style stuff. The latter wasn’t really successful; the subject matter is much more technically difficult (and I do not mean the work of Szemerédi and Gowers) than would be appropriate. Anyhow, over the years I devoted significant time and efforts to familiarize myself with this “second culture” mathematics. This was interrupted both by mathematical reasons (it is nearly impossible to completely switch areas in the western mathematical community), and by some completely external circumstances.

When later I looked anew both at the “second culture” mathematics and at the theory of the “Two cultures in mathematics”, I could not help but to admit that they both lost their appeal. There is no second culture. The fact is that some branches of mathematics are not mature enough to replace assembling long proofs out of many similar pieces by a conceptual framework, making them less elementary, but more clear. The results of the second culture still looked isolated from the mainstream mathematics. I realized that the elementary combinatorial methods of proofs, characteristic for the purported second culture, occur everywhere (including my own work in “the first culture”). I would not say that they are always inevitable, but very often it is simpler to verify some fact by a combinatorial argument than to find a conceptual framework trivializing it.

Perhaps, my opinion about the “second culture” reached its peak on the day (April 8, 2004) of posting to the arXiv of the Green-Tao paper about arithmetic progression of primes. Prime numbers are the central notion of mathematics, and every new result about them is interesting. But gradually it became clear that the Green-Tao paper has nothing to do with primes. Green and Tao proved a generalization of Szemerédi’s theorem. By some completely independent results about primes due to Goldston and Yildirim, the set of primes satisfies the assumptions of the Green-Tao theorem. The juxtaposition of these two independent results leads to a nicely looking theorem. But anything new about primes is contained in the Goldston-Yildirim part, and not in Green-Tao part. This was a big disappointment.

So, the affair ended without any drama, in contrast with the novel “The End of the Affair” by Graham Greene.


Next post: The politics of Timothy Gowers. 1.